# 25. Vector or Cross Product

# Exercise 25.1

## 1. Question

If  $\vec{a} = \hat{i} + 3\hat{j} - 2\hat{k}$  and  $\vec{b} = -\hat{i} + 3\hat{k}$ , find  $\left|\vec{a} \times \vec{b}\right|$ .

### Answer

Given  $\vec{a} = \hat{i} + 3\hat{j} - 2\hat{k}$  and  $\vec{b} = -\hat{i} + 3\hat{k}$ 

We need to find the magnitude of the vector  $\vec{a} \times \vec{b}$ .

Recall the cross product of two vectors  $\vec{a} = a_1\hat{1} + a_2\hat{j} + a_3\hat{k}$  and  $\vec{b} = b_1\hat{1} + b_2\hat{j} + b_3\hat{k}$  is

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Here, we have  $(a_1, a_2, a_3) = (1, 3, -2)$  and  $(b_1, b_2, b_3) = (-1, 0, 3)$ 

$$\Rightarrow \vec{a} \times \vec{b} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 1 & 3 & -2 \\ -1 & 0 & 3 \end{vmatrix}$$
  

$$\Rightarrow \vec{a} \times \vec{b} = \hat{i}[(3)(3) - (0)(-2)] - \hat{j}[(1)(3) - (-1)(-2)] + \hat{k}[(1)(0) - (-1)(3)]$$
  

$$\Rightarrow \vec{a} \times \vec{b} = \hat{i}[9 - 0] - \hat{j}[3 - 2] + \hat{k}[0 - (-3)]$$
  

$$\therefore \vec{a} \times \vec{b} = 9\hat{i} - \hat{j} + 3\hat{k}$$
  
Recall the magnitude of the vector  $x\hat{i} + y\hat{j} + z\hat{k}$  is  
 $|x\hat{i} + y\hat{j} + z\hat{k}| = \sqrt{x^2 + y^2 + z^2}$   
Now, we find  $|\vec{a} \times \vec{b}|$ .  
 $|\vec{a} \times \vec{b}| = \sqrt{9^2 + (-1)^2 + 3^2}$   

$$\Rightarrow |\vec{a} \times \vec{b}| = \sqrt{91}$$
  
Thus,  $|\vec{a} \times \vec{b}| = \sqrt{91}$   
**2** A. Question  
If  $\vec{a} = 3\hat{i} + 4\hat{j}$  and  $\vec{b} = \hat{i} + \hat{j} + \hat{k}$ , find the value of  $|\vec{a} \times \vec{b}|$ .

Answei

Given  $\vec{a} = 3\hat{i} + 4\hat{j}$  and  $\vec{b} = \hat{i} + \hat{j} + \hat{k}$ 

We need to find the magnitude of the vector  $\vec{a} \times \vec{b}$ .

Recall the cross product of two vectors  $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$  and  $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$  is

 $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$ 

Here, we have  $(a_1, a_2, a_3) = (3, 4, 0)$  and  $(b_1, b_2, b_3) = (1, 1, 1)$ 

$$\Rightarrow \vec{a} \times \vec{b} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 3 & 4 & 0 \\ 1 & 1 & 1 \end{vmatrix}$$

$$\Rightarrow \vec{a} \times \vec{b} = \hat{1}[(4)(1) - (1)(0)] - \hat{j}[(3)(1) - (1)(0)] + \hat{k}[(3)(1) - (1)(4)]$$

$$\Rightarrow \vec{a} \times \vec{b} = \hat{1}[4 - 0] - \hat{j}[3 - 0] + \hat{k}[3 - 4]$$

$$\therefore \vec{a} \times \vec{b} = 4\hat{1} - 3\hat{j} - \hat{k}$$
Recall the magnitude of the vector  $\hat{x}\hat{1} + \hat{y}\hat{j} + \hat{z}\hat{k}$  is
$$\begin{vmatrix} \hat{x}\hat{1} + \hat{y}\hat{j} + \hat{z}\hat{k} \end{vmatrix} = \sqrt{x^2 + y^2 + z^2}$$
Now, we find  $|\vec{a} \times \vec{b}|.$ 

$$\begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix} = \sqrt{4^2 + (-3)^2 + (-1)^2}$$

$$\Rightarrow \left|\vec{a} \times \vec{b}\right| = \sqrt{16 + 9 + 1}$$

$$\therefore \left| \vec{a} \times \vec{b} \right| = \sqrt{26}$$

Thus,  $\left|\vec{a} \times \vec{b}\right| = \sqrt{26}$ 

# 2 B. Question

If  $\vec{a} = 2\hat{i} + \hat{j}$ ,  $\vec{b} = \hat{i} + \hat{j} + \hat{k}$ , find the magnitude of  $\vec{a} \times \vec{b}$ .

## Answer

Given  $\vec{a} = 2\hat{i} + \hat{j}$  and  $\vec{b} = \hat{i} + \hat{j} + \hat{k}$ 

We need to find the magnitude of the vector  $\vec{a} \times \vec{b}$ .

Recall the cross product of two vectors  $\vec{a} = a_1\hat{1} + a_2\hat{1} + a_3\hat{k}$  and  $\vec{b} = b_1\hat{1} + b_2\hat{1} + b_3\hat{k}$  is

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Here, we have  $(a_1, a_2, a_3) = (2, 1, 0)$  and  $(b_1, b_2, b_3) = (1, 1, 1)$ 

$$\Rightarrow \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{vmatrix}$$

 $\Rightarrow \vec{a} \times \vec{b} = \hat{i}[(1)(1) - (1)(0)] - \hat{j}[(2)(1) - (1)(0)] + \hat{k}[(2)(1) - (1)(1)]$  $\Rightarrow \vec{a} \times \vec{b} = \hat{i}[1 - 0] - \hat{j}[2 - 0] + \hat{k}[2 - 1]$ 

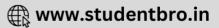
$$\therefore \vec{a} \times \vec{b} = \hat{i} - 2\hat{j} + \hat{k}$$

Recall the magnitude of the vector  $x\hat{i} + y\hat{j} + z\hat{k}$  is

$$\begin{vmatrix} x\hat{i} + y\hat{j} + z\hat{k} \end{vmatrix} = \sqrt{x^2 + y^2 + z^2}$$
  
Now, we find  $\begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix}$ .  
$$\begin{vmatrix} \vec{z} \times \vec{b} \end{vmatrix} = \sqrt{12 + (-2)^2 + 1^2}$$

$$|\mathbf{a} \times \mathbf{b}| = \sqrt{1^2 + (-2)^2 + 1}$$
$$\Rightarrow |\vec{\mathbf{a}} \times \vec{\mathbf{b}}| = \sqrt{1 + 4 + 1}$$

. .



# $\therefore \left| \vec{a} \times \vec{b} \right| = \sqrt{6}$

Thus, the magnitude of the vector  $\vec{a} \times \vec{b} = \sqrt{6}$ 

### 3 A. Question

Find a unit vector perpendicular to both the vectors  $4\hat{i} - \hat{j} + 3\hat{k}$  and  $-2\hat{i} + \hat{j} - 2\hat{k}$ .

### Answer

Given two vectors  $4\hat{i} - \hat{j} + 3\hat{k}$  and  $-2\hat{i} + \hat{j} - 2\hat{k}$ 

Let  $\vec{a}=4\hat{\imath}-\hat{\jmath}+3\hat{k}$  and  $\vec{b}=-2\hat{\imath}+\hat{\jmath}-2\hat{k}$ 

We need to find a unit vector perpendicular to  $\vec{a}$  and  $\vec{b}.$ 

Recall a vector that is perpendicular to two vectors  $\vec{a} = a_1\hat{1} + a_2\hat{j} + a_3\hat{k}$  and  $\vec{b} = b_1\hat{1} + b_2\hat{j} + b_3\hat{k}$  is

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Here, we have  $(a_1, a_2, a_3) = (4, -1, 3)$  and  $(b_1, b_2, b_3) = (-2, 1, -2)$ 

$$\Rightarrow \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & k \\ 4 & -1 & 3 \\ -2 & 1 & -2 \end{vmatrix}$$

$$\Rightarrow \vec{a} \times \vec{b} = \hat{i}[(-1)(-2) - (1)(3)] - \hat{j}[(4)(-2) - (-2)(3)] \\ + \hat{k}[(4)(1) - (-2)(-1)]$$

$$\Rightarrow \vec{a} \times \vec{b} = \hat{i}[2 - 3] - \hat{j}[-8 + 6] + \hat{k}[4 - 2]$$

$$\therefore \vec{a} \times \vec{b} = -\hat{i} + 2\hat{j} + 2\hat{k}$$

Let the unit vector in the direction of  $\vec{a} \times \vec{b}$  be  $\hat{p}$ .

We know unit vector in the direction of a vector  $\vec{a}$  is given by  $\hat{a} = \frac{\vec{a}}{|\vec{a}|}$ .

$$\Rightarrow \hat{\mathbf{p}} = \frac{\vec{\mathbf{a}} \times \vec{\mathbf{b}}}{\left|\vec{\mathbf{a}} \times \vec{\mathbf{b}}\right|}$$

Recall the magnitude of the vector  $x \hat{\imath} + y \hat{\jmath} + z \hat{k}$  is

$$\begin{vmatrix} x\hat{i} + y\hat{j} + z\hat{k} \end{vmatrix} = \sqrt{x^2 + y^2 + z^2}$$
Now, we find  $\begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix}$ .  

$$\begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix} = \sqrt{(-1)^2 + 2^2 + 2^2}$$

$$\Rightarrow \begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix} = \sqrt{1 + 4 + 4}$$

$$\therefore \begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix} = \sqrt{9} = 3$$
So, we have  $\hat{p} = \frac{\vec{a} \times \vec{b}}{3}$ 

$$\Rightarrow \hat{p} = \frac{1}{3} \left( -\hat{i} + 2\hat{j} + 2\hat{k} \right)$$

Thus, the required unit vector that is perpendicular to both  $\vec{a}$  and  $\vec{b}$  is  $\frac{1}{3}(-\hat{i}+2\hat{j}+2\hat{k})$ .

### 3 B. Question



Find a unit vector perpendicular to the plane containing the vectors  $\vec{a} = 2\hat{i} + \hat{j} + \hat{k}$  and  $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$ .

#### Answer

Given two vectors  $\vec{a} = 2\hat{i} + \hat{j} + \hat{k}$  and  $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$ 

We need to find a unit vector perpendicular to  $\vec{a}$  and  $\vec{b}$ .

Recall a vector that is perpendicular to two vectors  $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$  and  $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$  is

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Here, we have  $(a_1, a_2, a_3) = (2, 1, 1)$  and  $(b_1, b_2, b_3) = (1, 2, 1)$ 

$$\begin{aligned} \Rightarrow \vec{a} \times \vec{b} &= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 1 \\ 1 & 2 & 1 \end{vmatrix} \\ \Rightarrow \vec{a} \times \vec{b} &= \hat{i}[(1)(1) - (2)(1)] - \hat{j}[(2)(1) - (1)(1)] + \hat{k}[(2)(2) - (1)(1)] \\ \Rightarrow \vec{a} \times \vec{b} &= \hat{i}[1 - 2] - \hat{j}[2 - 1] + \hat{k}[4 - 1] \\ \therefore \vec{a} \times \vec{b} &= -\hat{i} - \hat{j} + 3\hat{k} \end{aligned}$$

Let the unit vector in the direction of  $\vec{a} \times \vec{b}$  be  $\hat{p}$ .

We know unit vector in the direction of a vector  $\vec{a}$  is given by  $\hat{a} = \frac{\vec{a}}{|\vec{a}|}$ .

$$\Rightarrow \hat{\mathbf{p}} = \frac{\vec{\mathbf{a}} \times \vec{\mathbf{b}}}{\left|\vec{\mathbf{a}} \times \vec{\mathbf{b}}\right|}$$

Recall the magnitude of the vector  $x \hat{\imath} + y \hat{\jmath} + z \hat{k}$  is

$$\left|x\hat{i} + y\hat{j} + z\hat{k}\right| = \sqrt{x^2 + y^2 + z^2}$$

Now, we find  $|\vec{a} \times \vec{b}|$ .

$$\begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix} = \sqrt{(-1)^2 + (-1)^2 + 3^2}$$
$$\Rightarrow \begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix} = \sqrt{1 + 1 + 9}$$
$$\therefore \begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix} = \sqrt{11}$$

So, we have  $\hat{\mathbf{p}} = \frac{\vec{\mathbf{a}} \times \vec{\mathbf{b}}}{\sqrt{11}}$ 

$$\Rightarrow \hat{\mathbf{p}} = \frac{1}{\sqrt{11}} \left( -\hat{\mathbf{i}} - \hat{\mathbf{j}} + 3\hat{\mathbf{k}} \right)$$

Thus, the required unit vector that is perpendicular to both  $\vec{a}$  and  $\vec{b}$  is  $\frac{1}{\sqrt{11}}(-\hat{l}-\hat{j}+3\hat{k})$ .

#### 4. Question

Find the magnitude of vector  $\vec{a} = (3\hat{k} + 4\hat{j}) \times (\hat{i} + \hat{j} - \hat{k})$ .

#### Answer

Given 
$$\vec{a} = (3\hat{k} + 4\hat{j}) \times (\hat{i} + \hat{j} - \hat{k})$$
  
 $\Rightarrow \vec{a} = (4\hat{j} + 3\hat{k}) \times (\hat{i} + \hat{j} - \hat{k})$ 

Get More Learning Materials Here :



# 🕀 www.studentbro.in

We need to find the magnitude of the vector  $\vec{a}$ .

Recall the cross product of two vectors  $\vec{a} = a_1\hat{1} + a_2\hat{j} + a_3\hat{k}$  and  $\vec{b} = b_1\hat{1} + b_2\hat{j} + b_3\hat{k}$  is

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Here, we have  $(a_1, a_2, a_3) = (0, 4, 3)$  and  $(b_1, b_2, b_3) = (1, 1, -1)$ 

$$\begin{aligned} \Rightarrow \vec{a} &= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 4 & 3 \\ 1 & 1 & -1 \end{vmatrix} \\ \Rightarrow \vec{a} &= \hat{i}[(4)(-1) - (1)(3)] - \hat{j}[(0)(-1) - (1)(3)] + \hat{k}[(0)(1) - (1)(4)] \\ \Rightarrow \vec{a} &= \hat{i}[-4 - 3] - \hat{j}[0 - 3] + \hat{k}[0 - 4] \\ \therefore \vec{a} &= -7\hat{i} + 3\hat{j} - 4\hat{k} \end{aligned}$$

Recall the magnitude of the vector  $x\hat{i} + y\hat{j} + z\hat{k}$  is

$$|\hat{x}\hat{i} + \hat{y}\hat{j} + \hat{z}\hat{k}| = \sqrt{x^2 + y^2 + z^2}$$
  
Now, we find  $|\vec{a}|$ .  
 $|\vec{a}| = \sqrt{(-7)^2 + 3^2 + (-4)^2}$ 

$$\Rightarrow |\vec{a}| = \sqrt{49 + 9 + 16}$$

Thus, magnitude of vector  $\vec{a} = \sqrt{74}$ 

#### 5. Question

If 
$$\vec{a} = 4\hat{i} + 3\hat{j} + \hat{k}$$
 and  $\vec{b} = \hat{i} - 2\hat{k}$ , then find  $\left| 2\hat{b} \times \vec{a} \right|$ .

#### Answer

Given  $\vec{a} = 4\hat{i} + 3\hat{j} + \hat{k}$  and  $\vec{b} = \hat{i} - 2\hat{k}$ 

We need to find the magnitude of vector  $2\hat{b} \times \vec{a}$ .

We know unit vector in the direction of a vector  $\vec{a}$  is given by  $\hat{a} = \frac{\vec{a}}{|\vec{a}|}$ .

$$\Rightarrow \hat{\mathbf{b}} = \frac{\vec{\mathbf{b}}}{|\vec{\mathbf{b}}|}$$
$$\Rightarrow \hat{\mathbf{b}} = \frac{(\hat{\mathbf{i}} - 2\hat{\mathbf{k}})}{\sqrt{1^2 + (-2)^2}}$$
$$\Rightarrow \hat{\mathbf{b}} = \frac{1}{\sqrt{5}}(\hat{\mathbf{i}} - 2\hat{\mathbf{k}})$$
$$\therefore 2\hat{\mathbf{b}} = \frac{2}{\sqrt{5}}(\hat{\mathbf{i}} - 2\hat{\mathbf{k}}) = \frac{2}{\sqrt{5}}\hat{\mathbf{i}} - \frac{4}{\sqrt{5}}\hat{\mathbf{k}}$$

Recall the cross product of two vectors  $\vec{a} = a_1\hat{1} + a_2\hat{j} + a_3\hat{k}$  and  $\vec{b} = b_1\hat{1} + b_2\hat{j} + b_3\hat{k}$  is

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Here, we have  $(a_1, a_2, a_3) = (\frac{2}{\sqrt{5}}, 0, -\frac{4}{\sqrt{5}})$  and  $(b_1, b_2, b_3) = (4, 3, 1)$ 

$$\Rightarrow 2\hat{b} \times \vec{a} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ \frac{2}{\sqrt{5}} & 0 & -\frac{4}{\sqrt{5}} \\ \frac{4}{\sqrt{5}} & 3 & 1 \end{vmatrix}$$

$$\Rightarrow 2\hat{b} \times \vec{a} = \hat{1} \Big[ (0)(1) - (3) \Big( -\frac{4}{\sqrt{5}} \Big) \Big] - \hat{j} \Big[ \Big( \frac{2}{\sqrt{5}} \Big) (1) - (4) \Big( -\frac{4}{\sqrt{5}} \Big) \Big]$$

$$+ \hat{k} \Big[ \Big( \frac{2}{\sqrt{5}} \Big) (3) - (4)(0) \Big]$$

$$\Rightarrow 2\hat{b} \times \vec{a} = \hat{1} \Big[ 0 + \frac{12}{\sqrt{5}} \Big] - \hat{j} \Big[ \frac{2}{\sqrt{5}} + \frac{16}{\sqrt{5}} \Big] + \hat{k} \Big[ \frac{6}{\sqrt{5}} - 0 \Big]$$

$$\therefore 2\hat{b} \times \vec{a} = \frac{12}{\sqrt{5}} \hat{1} - \frac{18}{\sqrt{5}} \hat{j} + \frac{6}{\sqrt{5}} \hat{k}$$

Recall the magnitude of the vector  $x \hat{\imath} + y \hat{\jmath} + z \hat{k}$  is

$$\left|x\hat{i} + y\hat{j} + z\hat{k}\right| = \sqrt{x^2 + y^2 + z^2}$$

Now, we find  $|2\hat{b} \times \vec{a}|$ .

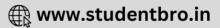
$$\begin{aligned} |2\hat{b} \times \vec{a}| &= \sqrt{\left(\frac{12}{\sqrt{5}}\right)^2 + \left(-\frac{18}{\sqrt{5}}\right)^2 + \left(\frac{6}{\sqrt{5}}\right)^2} \\ \Rightarrow |2\hat{b} \times \vec{a}| &= \sqrt{\frac{144}{5} + \frac{324}{5} + \frac{36}{5}} \\ \therefore |2\hat{b} \times \vec{a}| &= \sqrt{\frac{504}{5}} \end{aligned}$$
  
Thus,  $|2\hat{b} \times \vec{a}| &= \sqrt{\frac{504}{5}} \end{aligned}$ 

### 6. Question

$$\text{If } \vec{a} = 3\,\hat{i} - \hat{j} - 2\hat{k} \ \text{ and } \ \vec{b} = 2\,\hat{i} + 3\,\hat{j} + \hat{k}, \ \text{find } \left(\vec{a} + 2\vec{b}\right) \times \left(2\,\vec{a} - \vec{b}\right).$$

#### Answer

Given 
$$\vec{a} = 3\hat{i} - \hat{j} - 2\hat{k}$$
 and  $\vec{b} = 2\hat{i} + 3\hat{j} + \hat{k}$   
We need to find the vector  $(\vec{a} + 2\vec{b}) \times (2\vec{a} - \vec{b})$ .  
 $\vec{a} + 2\vec{b} = (3\hat{i} - \hat{j} - 2\hat{k}) + 2(2\hat{i} + 3\hat{j} + \hat{k})$   
 $\Rightarrow \vec{a} + 2\vec{b} = (3 + 4)\hat{i} + (-1 + 6)\hat{j} + (-2 + 2)\hat{k}$   
 $\therefore \vec{a} + 2\vec{b} = 7\hat{i} + 5\hat{j}$   
 $2\vec{a} - \vec{b} = 2(3\hat{i} - \hat{j} - 2\hat{k}) - (2\hat{i} + 3\hat{j} + \hat{k})$   
 $\Rightarrow 2\vec{a} - \vec{b} = (6 - 2)\hat{i} + (-2 - 3)\hat{j} + (-4 - 1)\hat{k}$ 



 $\therefore 2\vec{a} - \vec{b} = 4\hat{i} - 5\hat{j} - 5\hat{k}$ 

Recall the cross product of two vectors  $\vec{a} = a_1\hat{1} + a_2\hat{j} + a_3\hat{k}$  and  $\vec{b} = b_1\hat{1} + b_2\hat{j} + b_3\hat{k}$  is

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Here, we have  $(a_1, a_2, a_3) = (7, 5, 0)$  and  $(b_1, b_2, b_3) = (4, -5, -5)$ 

$$\Rightarrow (\vec{a} + 2\vec{b}) \times (2\vec{a} - \vec{b}) = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 7 & 5 & 0 \\ 4 & -5 & -5 \end{vmatrix}$$

 $\Rightarrow (\vec{a} + 2\vec{b}) \times (2\vec{a} - \vec{b})$  $= \hat{i}[(5)(-5) - (-5)(0)] - \hat{j}[(7)(-5) - (4)(0)]$  $+ \hat{k}[(7)(-5) - (4)(5)]$ 

$$\Rightarrow (\vec{a} + 2\vec{b}) \times (2\vec{a} - \vec{b}) = \hat{i}[-25 - 0] - \hat{j}[-35 - 0] + \hat{k}[-35 - 20]$$

$$(\vec{a} + 2\vec{b}) \times (2\vec{a} - \vec{b}) = -25\hat{i} + 35\hat{j} - 55\hat{k}$$

Thus,  $(\vec{a} + 2\vec{b}) \times (2\vec{a} - \vec{b}) = -25\hat{i} + 35\hat{j} - 55\hat{k}$ 

### 7 A. Question

Find a vector of magnitude 49, which is perpendicular to both the vectors  $2\hat{i} + 3\hat{j} + 6\hat{k}$  and  $3\hat{i} - 6\hat{j} + 2\hat{k}$ .

#### Answer

Given two vectors  $2\hat{i} + 3\hat{j} + 6\hat{k}$  and  $3\hat{i} - 6\hat{j} + 2\hat{k}$ 

Let  $\vec{a} = 2\hat{i} + 3\hat{j} + 6\hat{k}$  and  $\vec{b} = 3\hat{i} - 6\hat{j} + 2\hat{k}$ 

We need to find a vector of magnitude 49 that is perpendicular to  $\vec{a}$  and  $\vec{b}$ .

Recall a vector that is perpendicular to two vectors  $\vec{a} = a_1\hat{1} + a_2\hat{1} + a_3\hat{k}$  and  $\vec{b} = b_1\hat{1} + b_2\hat{1} + b_3\hat{k}$  is

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Here, we have  $(a_1, a_2, a_3) = (2, 3, 6)$  and  $(b_1, b_2, b_3) = (3, -6, 2)$ 

$$\Rightarrow \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 6 \\ 3 & -6 & 2 \end{vmatrix}$$

 $\Rightarrow \vec{a} \times \vec{b} = \hat{i}[(3)(2) - (-6)(6)] - \hat{j}[(2)(2) - (3)(6)] + \hat{k}[(2)(-6) - (3)(3)]$ 

$$\Rightarrow \vec{a} \times \vec{b} = \hat{i}[6+36] - \hat{j}[4-18] + \hat{k}[-12-9]$$

$$\therefore \vec{a} \times \vec{b} = 42\hat{i} + 14\hat{j} - 21\hat{k}$$

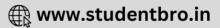
Recall the magnitude of the vector  $x\hat{i} + y\hat{j} + z\hat{k}$  is

$$\left|\mathbf{x}\hat{\mathbf{i}} + \mathbf{y}\hat{\mathbf{j}} + \mathbf{z}\hat{k}\right| = \sqrt{x^2 + y^2 + z^2}$$

Now, we find  $|\vec{a} \times \vec{b}|$ .

$$\left|\vec{a} \times \vec{b}\right| = \sqrt{42^2 + 14^2 + (-21)^2}$$

$$\Rightarrow \left| \vec{a} \times \vec{b} \right| = \sqrt{1764 + 196 + 441}$$



# $\therefore \left| \vec{a} \times \vec{b} \right| = \sqrt{2401} = 49$

Thus, the vector of magnitude 49 that is perpendicular to both  $\vec{a}$  and  $\vec{b}$  is  $42\hat{i} + 14\hat{j} - 21\hat{k}$ .

### 7 B. Question

Find the vector whose length is 3 and which is perpendicular to the vector  $\vec{a} = 3\hat{i} + \hat{j} - 4\hat{k}$  and  $\vec{b} = 6\hat{i} + 5\hat{j} - 2\hat{k}$ .

#### Answer

Given two vectors  $\vec{a} = 3\hat{i} + \hat{j} - 4\hat{k}$  and  $\vec{b} = 6\hat{i} + 5\hat{j} - 2\hat{k}$ 

We need to find vector of magnitude 3 that is perpendicular to  $\vec{a}$  and  $\vec{b}$ .

Recall a vector that is perpendicular to two vectors  $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$  and  $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$  is

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Here, we have  $(a_1, a_2, a_3) = (3, 1, -4)$  and  $(b_1, b_2, b_3) = (6, 5, -2)$ 

$$\begin{aligned} \Rightarrow \vec{a} \times \vec{b} &= \begin{vmatrix} \hat{i} & \hat{j} & k \\ 3 & 1 & -4 \\ 6 & 5 & -2 \end{vmatrix} \\ \Rightarrow \vec{a} \times \vec{b} &= \hat{i}[(1)(-2) - (5)(-4)] - \hat{j}[(3)(-2) - (6)(-4)] + \hat{k}[(3)(5) - (6)(1)] \\ \Rightarrow \vec{a} \times \vec{b} &= \hat{i}[-2 + 20] - \hat{j}[-6 + 24] + \hat{k}[15 - 6] \\ \therefore \vec{a} \times \vec{b} &= 18\hat{i} - 18\hat{j} + 9\hat{k} \\ \text{Recall the magnitude of the vector } x\hat{i} + y\hat{j} + z\hat{k} \text{ is} \\ |x\hat{i} + y\hat{j} + z\hat{k}| &= \sqrt{x^2 + y^2 + z^2} \\ \text{Now, we find } |\vec{a} \times \vec{b}|. \end{aligned}$$

$$\begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix} = \sqrt{18^2 + (-18)^2 + 9^2}$$
$$\Rightarrow \begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix} = \sqrt{324 + 324 + 81}$$
$$\therefore \begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix} = \sqrt{729} = 27$$

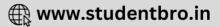
Let the unit vector in the direction of  $\vec{a} \times \vec{b}$  be  $\hat{p}$ .

We know unit vector in the direction of a vector  $\vec{a}$  is given by  $\hat{a} = \frac{\vec{a}}{|\vec{a}|}$ .

$$\Rightarrow \hat{p} = \frac{\vec{a} \times \vec{b}}{\left|\vec{a} \times \vec{b}\right|}$$
$$\Rightarrow \hat{p} = \frac{\vec{a} \times \vec{b}}{27}$$
$$\therefore \hat{p} = \frac{1}{27} (18\hat{i} - 18\hat{j} + 9\hat{k})$$

So, a vector of magnitude 3 in the direction of  $\vec{a}\times\vec{b}$  is

$$3\hat{p} = 3 \times \frac{1}{27} (18\hat{i} - 18\hat{j} + 9\hat{k})$$



$$\Rightarrow 3\hat{\mathbf{p}} = \frac{1}{9} \left( 18\hat{\mathbf{i}} - 18\hat{\mathbf{j}} + 9\hat{\mathbf{k}} \right)$$

$$\therefore 3\hat{p} = 2\hat{i} - 2\hat{j} + \hat{k}$$

Thus, the vector of magnitude 3 that is perpendicular to both  $\vec{a}$  and  $\vec{b}$  is  $2\hat{i} - 2\hat{j} + \hat{k}$ .

### 8 A. Question

Find the area of the parallelogram determined by the vectors :

 $2\hat{i}$  and  $3\hat{j}$ 

#### Answer

Given two vectors  $2\hat{1}$  and  $3\hat{j}$  are sides of a parallelogram

Let  $\vec{a} = 2\hat{i}$  and  $\vec{b} = 3\hat{j}$ 

Recall the area of the parallelogram whose adjacent sides are given by the two vectors  $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and  $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$  is  $|\vec{a} \times \vec{b}|$  where

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Here, we have  $(a_1, a_2, a_3) = (2, 0, 0)$  and  $(b_1, b_2, b_3) = (0, 3, 0)$ 

$$\Rightarrow \vec{a} \times \vec{b} = \begin{vmatrix} \hat{1} & \hat{j} & k \\ 2 & 0 & 0 \\ 0 & 3 & 0 \end{vmatrix}$$
$$\Rightarrow \vec{a} \times \vec{b} = \hat{1}[(0)(0) - (3)(0)] - \hat{1}[(2)(0) - (0)(0)] + \hat{k}[(2)(3) - (0)(0)]$$
$$\Rightarrow \vec{a} \times \vec{b} = \hat{1}[0 - 0] - \hat{1}[0 - 0] + \hat{k}[6 - 0]$$
$$\therefore \vec{a} \times \vec{b} = 6\hat{k}$$

Recall the magnitude of the vector  $x\hat{i} + y\hat{j} + z\hat{k}$  is

$$\left|x\hat{i} + y\hat{j} + z\hat{k}\right| = \sqrt{x^2 + y^2 + z^2}$$

Now, we find  $|\vec{a} \times \vec{b}|$ .

$$|\vec{a} \times \vec{b}| = \sqrt{0^2 + 0^2 + 6^2}$$

$$\Rightarrow \left| \vec{a} \times \vec{b} \right| = \sqrt{6^2}$$

$$|\vec{a} \times \vec{b}| = 6$$

Thus, area of the parallelogram is 6 square units.

### 8 B. Question

Find the area of the parallelogram determined by the vectors :

$$2\,\hat{i}+\hat{j}+3\hat{k}$$
 and  $\hat{i}-\hat{j}$ 

# Answer

Given two vectors  $2\hat{\imath} + \hat{\jmath} + 3\hat{k}$  and  $\hat{\imath} - \hat{\jmath}$  are sides of a parallelogram

Let 
$$\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$$
 and  $\vec{b} = \hat{i} - \hat{j}$ 

Recall the area of the parallelogram whose adjacent sides are given by the two vectors  $\vec{a} = a_1\hat{1} + a_2\hat{j} + a_3\hat{k}$ 

Get More Learning Materials Here : 📕

CLICK HERE



and  $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$  is  $|\vec{a} \times \vec{b}|$  where

 $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$ 

Here, we have  $(a_1, a_2, a_3) = (2, 1, 3)$  and  $(b_1, b_2, b_3) = (1, -1, 0)$ 

$$\Rightarrow \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{vmatrix}$$
  
$$\Rightarrow \vec{a} \times \vec{b} = \hat{i}[(1)(0) - (-1)(3)] - \hat{j}[(2)(0) - (1)(3)] + \hat{k}[(2)(-1) - (1)(1)]$$
  
$$\Rightarrow \vec{a} \times \vec{b} = \hat{i}[0+3] - \hat{j}[0-3] + \hat{k}[-2-1]$$
  
$$\therefore \vec{a} \times \vec{b} = 3\hat{i} + 3\hat{j} - 3\hat{k}$$
  
Recall the magnitude of the vector  $x\hat{i} + y\hat{j} + z\hat{k}$  is

$$|x\hat{i} + y\hat{j} + z\hat{k}| = \sqrt{x^2 + y^2 + z^2}$$

Now, we find  $|\vec{a} \times \vec{b}|$ .

 $\left|\vec{a} \times \vec{b}\right| = \sqrt{3^2 + 3^2 + (-3)^2}$ 

 $\Rightarrow |\vec{a} \times \vec{b}| = \sqrt{9+9+9}$ 

$$|\vec{a} \times \vec{b}| = 3\sqrt{3}$$

Thus, area of the parallelogram is  $3\sqrt{3}$  square units.

### 8 C. Question

Find the area of the parallelogram determined by the vectors :

$$3\,\hat{i}+\hat{j}-2\hat{k}$$
 and  $\hat{i}-3\hat{j}+4\hat{k}$ 

### Answer

Given two vectors  $3\hat{i} + \hat{j} - 2\hat{k}$  and  $\hat{i} - 3\hat{j} + 4\hat{k}$  are sides of a parallelogram

Let  $\vec{a} = 3\hat{i} + \hat{j} - 2\hat{k}$  and  $\vec{b} = \hat{i} - 3\hat{j} + 4\hat{k}$ 

Recall the area of the parallelogram whose adjacent sides are given by the two vectors  $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and  $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$  is  $|\vec{a} \times \vec{b}|$  where

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Here, we have  $(a_1, a_2, a_3) = (3, 1, -2)$  and  $(b_1, b_2, b_3) = (1, -3, 4)$ 

$$\begin{aligned} \Rightarrow \vec{a} \times \vec{b} &= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & -2 \\ 1 & -3 & 4 \end{vmatrix} \\ \Rightarrow \vec{a} \times \vec{b} &= \hat{i}[(1)(4) - (-3)(-2)] - \hat{j}[(3)(4) - (1)(-2)] + \hat{k}[(3)(-3) - (1)(1)] \\ \Rightarrow \vec{a} \times \vec{b} &= \hat{i}[4 - 6] - \hat{j}[12 + 2] + \hat{k}[-9 - 1] \\ \therefore \vec{a} \times \vec{b} &= -2\hat{i} - 14\hat{j} - 10\hat{k} \end{aligned}$$

Recall the magnitude of the vector  $x\hat{i} + y\hat{j} + z\hat{k}$  is

Get More Learning Materials Here : 📕

# 🕀 www.studentbro.in

$$|\hat{x}\hat{i} + y\hat{j} + z\hat{k}| = \sqrt{x^2 + y^2 + z^2}$$
  
Now, we find  $|\vec{a} \times \vec{b}|$ .

 $|\vec{a} \times \vec{b}| = \sqrt{(-2)^2 + (-14)^2 + (-10)^2}$  $\Rightarrow |\vec{a} \times \vec{b}| = \sqrt{4 + 196 + 100}$ 

 $\therefore \left| \vec{a} \times \vec{b} \right| = 10\sqrt{3}$ 

Thus, area of the parallelogram is  $10\sqrt{3}$  square units.

### 8 D. Question

Find the area of the parallelogram determined by the vectors :

 $\hat{i}-3\hat{j}+\hat{k}$  and  $\hat{i}+\hat{j}+\hat{k}$ 

## Answer

Given two vectors  $\hat{1} - 3\hat{1} + \hat{k}$  and  $\hat{1} + \hat{1} + \hat{k}$  are sides of a parallelogram

Let  $\vec{a} = \hat{i} - 3\hat{j} + \hat{k}$  and  $\vec{b} = \hat{i} + \hat{j} + \hat{k}$ 

Recall the area of the parallelogram whose adjacent sides are given by the two vectors  $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and  $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$  is  $|\vec{a} \times \vec{b}|$  where

 $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$ 

Here, we have  $(a_1, a_2, a_3) = (1, -3, 1)$  and  $(b_1, b_2, b_3) = (1, 1, 1)$ 

$$\Rightarrow \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$
  
$$\Rightarrow \vec{a} \times \vec{b} = \hat{i}[(-3)(1) - (1)(1)] - \hat{j}[(1)(1) - (1)(1)] + \hat{k}[(1)(1) - (1)(-3)]$$
  
$$\Rightarrow \vec{a} \times \vec{b} = \hat{i}[-3 - 1] - \hat{j}[1 - 1] + \hat{k}[1 + 3]$$
  
$$\therefore \vec{a} \times \vec{b} = -4\hat{i} + 4\hat{k}$$

Recall the magnitude of the vector  $x\hat{i} + y\hat{j} + z\hat{k}$  is

$$\left|x\hat{i} + y\hat{j} + z\hat{k}\right| = \sqrt{x^2 + y^2 + z^2}$$

Now, we find  $|\vec{a} \times \vec{b}|$ .

$$|\vec{a} \times \vec{b}| = \sqrt{(-4)^2 + 0^2 + 4^2}$$

$$\Rightarrow \left| \vec{a} \times \vec{b} \right| = \sqrt{16 + 16}$$

$$|\vec{a} \times \vec{b}| = 4\sqrt{2}$$

Thus, the area of the parallelogram is  $4\sqrt{2}$  square units.

# 9 A. Question

Find the area of the parallelogram whose diagonals are :

$$4\,\hat{i}-\hat{j}-3\hat{k}$$
 and  $-2\,\hat{i}+\hat{j}-2\hat{k}$ 

Get More Learning Materials Here : 📕

>>>



#### Answer

Given two diagonals of a parallelogram are  $4\hat{i} - \hat{j} - 3\hat{k}$  and  $-2\hat{i} + \hat{j} - 2\hat{k}$ 

Let  $\vec{a} = 4\hat{i} - \hat{j} - 3\hat{k}$  and  $\vec{b} = -2\hat{i} + \hat{j} - 2\hat{k}$ 

Recall the area of the parallelogram whose diagonals are given by the two vectors  $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$  and  $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$  is  $\frac{1}{2}|\vec{a} \times \vec{b}|$  where

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Here, we have  $(a_1, a_2, a_3) = (4, -1, -3)$  and  $(b_1, b_2, b_3) = (-2, 1, -2)$ 

$$\Rightarrow \vec{a} \times \vec{b} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 4 & -1 & -3 \\ -2 & 1 & -2 \end{vmatrix}$$

$$\Rightarrow \vec{a} \times \vec{b} = \hat{1}[(-1)(-2) - (1)(-3)] - \hat{j}[(4)(-2) - (-2)(-3)] \\ + \hat{k}[(4)(1) - (-2)(-1)]$$

$$\Rightarrow \vec{a} \times \vec{b} = \hat{1}[2+3] - \hat{j}[-8-6] + \hat{k}[4-2]$$

$$\therefore \vec{a} \times \vec{b} = 5\hat{1} + 14\hat{j} + 2\hat{k}$$

Recall the magnitude of the vector  $x\hat{i} + y\hat{j} + z\hat{k}$  is

$$\begin{aligned} \left| x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}} \right| &= \sqrt{x^2 + y^2 + z^2} \\ \text{Now, we find } \left| \vec{\mathbf{a}} \times \vec{\mathbf{b}} \right|. \\ \left| \vec{\mathbf{a}} \times \vec{\mathbf{b}} \right| &= \sqrt{5^2 + 14^2 + 2^2} \\ \Rightarrow \left| \vec{\mathbf{a}} \times \vec{\mathbf{b}} \right| &= \sqrt{25 + 196 + 4} \\ \Rightarrow \left| \vec{\mathbf{a}} \times \vec{\mathbf{b}} \right| &= \sqrt{225} = 15 \\ \therefore \frac{\left| \vec{\mathbf{a}} \times \vec{\mathbf{b}} \right|}{2} &= \frac{15}{2} = 7.5 \end{aligned}$$

Thus, the area of the parallelogram is 7.5 square units.

#### 9 B. Question

Find the area of the parallelogram whose diagonals are :

 $2\,\hat{i}+\hat{k}$  and  $\hat{i}+\hat{j}+\hat{k}$ 

### Answer

Given two diagonals of a parallelogram are  $2\hat{i} + \hat{k}$  and  $\hat{i} + \hat{j} + \hat{k}$ 

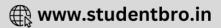
Let  $\vec{a} = 2\hat{i} + \hat{k}$  and  $\vec{b} = \hat{i} + \hat{j} + \hat{k}$ 

Recall the area of the parallelogram whose diagonals are given by the two vectors  $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$  and  $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$  is  $\frac{1}{2}|\vec{a} \times \vec{b}|$  where

 $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$ 

Here, we have  $(a_1, a_2, a_3) = (2, 0, 1)$  and  $(b_1, b_2, b_3) = (1, 1, 1)$ 

Get More Learning Materials Here : 🗾



 $\Rightarrow \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & k \\ 2 & 0 & 1 \\ 1 & 1 & 1 \end{vmatrix}$  $\Rightarrow \vec{a} \times \vec{b} = \hat{i}[(0)(1) - (1)(1)] - \hat{j}[(2)(1) - (1)(1)] + \hat{k}[(2)(1) - (1)(0)]$  $\Rightarrow \vec{a} \times \vec{b} = \hat{i}[0 - 1] - \hat{j}[2 - 1] + \hat{k}[2 - 0]$  $\therefore \vec{a} \times \vec{b} = -\hat{i} - \hat{j} + 2\hat{k}$ 

Recall the magnitude of the vector  $x\hat{i} + y\hat{j} + z\hat{k}$  is

$$|x\hat{i} + y\hat{j} + z\hat{k}| = \sqrt{x^2 + y^2 + z^2}$$
Now, we find  $|\vec{a} \times \vec{b}|$ .  

$$|\vec{a} \times \vec{b}| = \sqrt{(-1)^2 + (-1)^2 + 2^2}$$

$$\Rightarrow |\vec{a} \times \vec{b}| = \sqrt{1 + 1 + 4}$$

$$\Rightarrow |\vec{a} \times \vec{b}| = \sqrt{6}$$

$$\therefore \frac{|\vec{a} \times \vec{b}|}{2} = \frac{\sqrt{6}}{2}$$

Thus, the area of the parallelogram is  $\frac{\sqrt{6}}{2}$  square units.

#### 9 C. Question

Find the area of the parallelogram whose diagonals are :

 $3\,\hat{i}+4\,\hat{j}$  and  $\hat{i}+\hat{j}+\hat{k}$ 

#### Answer

Given two diagonals of a parallelogram are  $3\hat{i} + 4\hat{j}$  and  $\hat{i} + \hat{j} + \hat{k}$ 

Let 
$$\vec{a} = 3\hat{i} + 4\hat{j}$$
 and  $\vec{b} = \hat{i} + \hat{j} + \hat{k}$ 

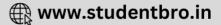
Recall the area of the parallelogram whose diagonals are given by the two vectors  $\vec{a} = a_1\hat{1} + a_2\hat{1} + a_3\hat{k}$  and  $\vec{b} = b_1\hat{1} + b_2\hat{1} + b_3\hat{k}$  is  $\frac{1}{2}|\vec{a} \times \vec{b}|$  where

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Here, we have  $(a_1, a_2, a_3) = (3, 4, 0)$  and  $(b_1, b_2, b_3) = (1, 1, 1)$ 

 $\begin{aligned} \Rightarrow \vec{a} \times \vec{b} &= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 4 & 0 \\ 1 & 1 & 1 \end{vmatrix} \\ \Rightarrow \vec{a} \times \vec{b} &= \hat{i}[(4)(1) - (1)(0)] - \hat{j}[(3)(1) - (1)(0)] + \hat{k}[(3)(1) - (1)(4)] \\ \Rightarrow \vec{a} \times \vec{b} &= \hat{i}[4 - 0] - \hat{j}[3 - 0] + \hat{k}[3 - 4] \\ \therefore \vec{a} \times \vec{b} &= 4\hat{i} - 3\hat{j} - \hat{k} \\ \text{Recall the magnitude of the vector } x\hat{i} + y\hat{j} + z\hat{k} \text{ is} \\ |x\hat{i} + y\hat{j} + z\hat{k}| &= \sqrt{x^2 + y^2 + z^2} \end{aligned}$ 

Now, we find  $\vec{a} \times \vec{b}$ .



$$\begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix} = \sqrt{4^2 + (-3)^2 + (-1)^2}$$
  
$$\Rightarrow \begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix} = \sqrt{16 + 9 + 1}$$
  
$$\Rightarrow \begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix} = \sqrt{26}$$
  
$$\therefore \frac{\begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix}}{2} = \frac{\sqrt{26}}{2}$$

Thus, the area of the parallelogram is  $\frac{\sqrt{26}}{2}$  square units.

#### 9 D. Question

Find the area of the parallelogram whose diagonals are :

$$2\,\hat{i}+3\,\hat{j}+6\hat{k}$$
 and  $3\,\hat{i}-6\,\hat{j}+2\hat{k}$ 

#### Answer

Given two diagonals of a parallelogram are  $2\hat{i} + 3\hat{j} + 6\hat{k}$  and  $3\hat{i} - 6\hat{j} + 2\hat{k}$ 

Let  $\vec{a} = 2\hat{i} + 3\hat{j} + 6\hat{k}$  and  $\vec{b} = 3\hat{i} - 6\hat{j} + 2\hat{k}$ 

Recall the area of the parallelogram whose diagonals are given by the two vectors  $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$  and  $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$  is  $\frac{1}{2}|\vec{a} \times \vec{b}|$  where

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Here, we have  $(a_1, a_2, a_3) = (2, 3, 6)$  and  $(b_1, b_2, b_3) = (3, -6, 2)$ 

$$\begin{aligned} \Rightarrow \vec{a} \times \vec{b} &= \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 2 & 3 & 6 \\ 3 & -6 & 2 \end{vmatrix} \\ \Rightarrow \vec{a} \times \vec{b} &= \hat{1}[(3)(2) - (-6)(6)] - \hat{j}[(2)(2) - (3)(6)] + \hat{k}[(2)(-6) - (3)(3)] \\ \Rightarrow \vec{a} \times \vec{b} &= \hat{1}[6 + 36] - \hat{j}[4 - 18] + \hat{k}[-12 - 9] \\ \therefore \vec{a} \times \vec{b} &= 42\hat{i} + 14\hat{j} - 21\hat{k} \end{aligned}$$

Recall the magnitude of the vector  $x\hat{i} + y\hat{j} + z\hat{k}$  is

$$|x\hat{i} + y\hat{j} + z\hat{k}| = \sqrt{x^2 + y^2 + z^2}$$

Now, we find  $|\vec{a} \times \vec{b}|$ .

$$\begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix} = \sqrt{42^2 + 14^2 + (-21)^2}$$
$$\Rightarrow \begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix} = \sqrt{1764 + 196 + 441}$$
$$\Rightarrow \begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix} = \sqrt{2401} = 49$$

$$\therefore \frac{\left|\vec{a} \times \vec{b}\right|}{2} = \frac{49}{2} = 24.5$$

Thus, area of the parallelogram is 24.5 square units.

#### 10. Question

If  $\vec{a} = 2\hat{i} + 5\hat{j} - 7\hat{k}$ ,  $\vec{b} = -3\hat{i} + 4\hat{j} + \hat{k}$  and  $\vec{c} = \hat{i} - 2\hat{j} - 3\hat{k}$ , compute  $(\vec{a} \times \vec{b}) \times \vec{c}$  and  $\vec{a} \times (\vec{b} \times \vec{c})$  and verify

**CLICK HERE** 

>>>

🕀 www.studentbro.in

that these are not equal.

#### Answer

Given  $\vec{a} = 2\hat{i} + 5\hat{j} - 7\hat{k}$ ,  $\vec{b} = -3\hat{i} + 4\hat{j} + \hat{k}$  and  $\vec{c} = \hat{i} - 2\hat{j} - 3\hat{k}$ 

We need to find  $(\vec{a} \times \vec{b}) \times \vec{c}$ .

First, we will find  $\vec{a} \times \vec{b}$ .

Recall the cross product of two vectors  $\vec{a} = a_1\hat{1} + a_2\hat{j} + a_3\hat{k}$  and  $\vec{b} = b_1\hat{1} + b_2\hat{j} + b_3\hat{k}$  is

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Here, we have  $(a_1, a_2, a_3) = (2, 5, -7)$  and  $(b_1, b_2, b_3) = (-3, 4, 1)$ 

$$\Rightarrow \vec{a} \times \vec{b} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 2 & 5 & -7 \\ -3 & 4 & 1 \end{vmatrix}$$
  
$$\Rightarrow \vec{a} \times \vec{b} = \hat{1}[(5)(1) - (4)(-7)] - \hat{1}[(2)(1) - (-3)(-7)] + \hat{k}[(2)(4) - (-3)(5)]$$
  
$$\Rightarrow \vec{a} \times \vec{b} = \hat{1}[5 + 28] - \hat{1}[2 - 21] + \hat{k}[8 + 15]$$
  
$$\therefore \vec{a} \times \vec{b} = 33\hat{1} + 19\hat{j} + 23\hat{k}$$

Now, we will find  $(\vec{a} \times \vec{b}) \times \vec{c}$ .

Using the formula for cross product as above, we have

$$(\vec{a} \times \vec{b}) \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 33 & 19 & 23 \\ 1 & -2 & -3 \end{vmatrix}$$
  

$$\Rightarrow (\vec{a} \times \vec{b}) \times \vec{c}$$

$$= \hat{i}[(19)(-3) - (-2)(23)] - \hat{j}[(33)(-3) - (1)(23)]$$

$$+ \hat{k}[(33)(-2) - (1)(19)]$$

$$\Rightarrow (\vec{a} \times \vec{b}) \times \vec{c} = \hat{i}[-57 + 46] - \hat{j}[-99 - 23] + \hat{k}[-66 - 19]$$

$$\therefore (\vec{a} \times \vec{b}) \times \vec{c} = -11\hat{i} + 122\hat{j} - 85\hat{k}$$

. .

Now, we need to find  $\vec{a} \times (\vec{b} \times \vec{c})$ .

First, we will find  $\vec{b} \times \vec{c}$ .

Using the formula for cross product, we have

$$\Rightarrow \vec{b} \times \vec{c} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ -3 & 4 & 1 \\ 1 & -2 & -3 \end{vmatrix}$$

$$\Rightarrow \vec{b} \times \vec{c} = \hat{1}[(4)(-3) - (-2)(1)] - \hat{1}[(-3)(-3) - (1)(1)] \\ + \hat{k}[(-3)(-2) - (1)(4)]$$

$$\Rightarrow \vec{b} \times \vec{c} = \hat{1}[-12 + 2] - \hat{1}[9 - 1] + \hat{k}[6 - 4]$$

$$\therefore \vec{b} \times \vec{c} = -10\hat{1} - 8\hat{j} + 2\hat{k}$$
Now, we will find  $\vec{a} \times (\vec{b} \times \vec{c})$ .

Using the formula for the cross product as above, we have

**CLICK HERE** 

>>

🕀 www.studentbro.in

$$\vec{a} \times (\vec{b} \times \vec{c}) = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 2 & 5 & -7 \\ -10 & -8 & 2 \end{vmatrix}$$
  

$$\Rightarrow \vec{a} \times (\vec{b} \times \vec{c}) = \hat{1}[(5)(2) - (-8)(-7)] - \hat{1}[(2)(2) - (-10)(-7)] + \hat{k}[(2)(-8) - (-10)(5)]$$
  

$$\Rightarrow \vec{a} \times (\vec{b} \times \vec{c}) = \hat{1}[10 - 56] - \hat{1}[4 - 70] + \hat{k}[-16 + 50]$$
  

$$\therefore \vec{a} \times (\vec{b} \times \vec{c}) = -46\hat{1} + 66\hat{1} + 34\hat{k}$$
  
So, we found  $(\vec{a} \times \vec{b}) \times \vec{c} = -11\hat{1} + 122\hat{1} - 85\hat{k}$  and  
 $\vec{a} \times (\vec{b} \times \vec{c}) = -46\hat{1} + 66\hat{1} + 34\hat{k}$   
Therefore, we have  $(\vec{a} \times \vec{b}) \times \vec{c} \neq \vec{a} \times (\vec{b} \times \vec{c})$ .

## 11. Question

If  $\left|\vec{a}\right| = 2$ ,  $\left|\vec{b}\right| = 5$  and  $\left|\vec{a} \times \vec{b}\right| = 8$ , find  $\vec{a} \cdot \vec{b}$ .

### Answer

Given  $|\vec{a}| = 2$ ,  $|\vec{b}| = 5$  and  $|\vec{a} \times \vec{b}| = 8$ 

We know the cross product of two vectors  $\vec{a}$  and  $\vec{b}$  forming an angle  $\theta$  is

 $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$ 

where  $_{\widehat{11}}$  is a unit vector perpendicular to  $\overrightarrow{a}$  and  $\overrightarrow{b}$ 

```
\Rightarrow \left|\vec{a} \times \vec{b}\right| = \left|\vec{a}\right| \left|\vec{b}\right| |\sin\theta| |\hat{n}|
```

 $\hat{\mathbf{n}}$  is a unit vector  $\Rightarrow |\hat{\mathbf{n}}| = 1$ 

```
\Rightarrow 8 = 2 \times 5 \times \sin \theta \times 1
```

```
\Rightarrow 10 sin \theta = 8
```

$$\therefore \sin \theta = \frac{4}{5}$$

We also have the dot product of two vectors  $\vec{a}$  and  $\vec{b}$  forming an angle  $\theta$  is

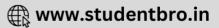
$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

$$\Rightarrow \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$
But, we have  $\sin^2 \theta + \cos^2 \theta = 1$ 

$$\Rightarrow \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \sqrt{1 - \sin^2 \theta}$$

$$\Rightarrow \vec{a} \cdot \vec{b} = 2 \times 5 \times \sqrt{1 - \left(\frac{4}{5}\right)^2}$$

$$\Rightarrow \vec{a} \cdot \vec{b} = 10 \times \sqrt{1 - \frac{16}{25}}$$



$$\Rightarrow \vec{a} \cdot \vec{b} = 10 \times \sqrt{\frac{9}{25}}$$
$$\therefore \vec{a} \cdot \vec{b} = 10 \times \frac{3}{5} = 6$$

Thus,  $\vec{a} \cdot \vec{b} = 6$ 

## 12. Question

Given  $\vec{a} = \frac{1}{7} \left( 2\hat{i} + 3\hat{j} + 6\hat{k} \right), \vec{b} = \frac{1}{7} \left( 3\hat{i} - 6\hat{j} + 2\hat{k} \right), \vec{c} = \frac{1}{7} \left( 6\hat{i} + 2\hat{j} - 3\hat{k} \right), \hat{i}, \hat{j}, \hat{k}$  being a right handed orthogonal system of unit vectors in space, show that  $\vec{a}, \vec{b}, \vec{c}$  is also another system.

### Answer

To show that  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  is a right handed orthogonal system of unit vectors, we need to prove the following –

- (a)  $|\vec{a}| = |b| = |\vec{c}| = 1$
- (b)  $\vec{a} \times \vec{b} = \vec{c}$
- (c)  $\vec{\mathbf{b}} \times \vec{\mathbf{c}} = \vec{\mathbf{a}}$
- (d)  $\vec{c} \times \vec{a} = \vec{b}$

Let us consider each of these one at a time.

(a) Recall the magnitude of the vector  $x \hat{\imath} + y \hat{\jmath} + z \hat{k}$  is

$$\left|x\hat{i}+y\hat{j}+z\hat{k}\right|=\sqrt{x^2+y^2+z^2}$$

First, we will find a.

$$|\vec{a}| = \frac{1}{7}\sqrt{2^2 + 3^2 + 6^2}$$
  

$$\Rightarrow |\vec{a}| = \frac{1}{7}\sqrt{4 + 9 + 36}$$
  

$$\Rightarrow |\vec{a}| = \frac{1}{7}\sqrt{49} = \frac{1}{7} \times 7$$
  

$$\therefore |\vec{a}| = 1$$
  
Now, we will find  $|\vec{a}|$ .  

$$|\vec{b}| = \frac{1}{7}\sqrt{3^2 + (-6)^2 + 2^2}$$
  

$$\Rightarrow |\vec{b}| = \frac{1}{7}\sqrt{9 + 36 + 4}$$
  

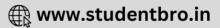
$$\Rightarrow |\vec{b}| = \frac{1}{7}\sqrt{49} = \frac{1}{7} \times 7$$

∴ 
$$\left| \vec{b} \right| = 1$$

Finally, we will find [c].

$$|\vec{c}| = \frac{1}{7}\sqrt{6^2 + 2^2 + (-3)^2}$$
  
 $\Rightarrow |\vec{c}| = \frac{1}{7}\sqrt{36 + 4 + 9}$ 





$$\Rightarrow |\vec{c}| = \frac{1}{7}\sqrt{49} = \frac{1}{7} \times 7$$
$$\therefore |\vec{c}| = 1$$

Hence, we have  $|\vec{a}| = |b| = |\vec{c}| = 1$ 

(b) Now, we will evaluate the vector  $\vec{a} \times \vec{b}$ 

Recall the cross product of two vectors  $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$  and  $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$  is

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Taking the scalar  $\frac{1}{7}$  common, here, we have  $(a_1, a_2, a_3) = (2, 3, 6)$  and  $(b_1, b_2, b_3) = (3, -6, 2)$ 

$$\Rightarrow \vec{a} \times \vec{b} = \frac{1}{7} \times \frac{1}{7} \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 2 & 3 & 6 \\ 3 & -6 & 2 \end{vmatrix}$$
  
$$\Rightarrow \vec{a} \times \vec{b} = \frac{1}{49} (\hat{1}[(3)(2) - (-6)(6)] - \hat{1}[(2)(2) - (3)(6)] + \hat{k}[(2)(-6) - (3)(3)])$$
  
$$\Rightarrow \vec{a} \times \vec{b} = \frac{1}{49} (\hat{1}[6 + 36] - \hat{1}[4 - 18] + \hat{k}[-12 - 9])$$
  
$$\Rightarrow \vec{a} \times \vec{b} = \frac{1}{49} (42\hat{1} + 14\hat{1} - 21\hat{k})$$
  
$$\therefore \vec{a} \times \vec{b} = \frac{1}{7} (6\hat{1} + 2\hat{j} - 3\hat{k}) = \vec{c}$$

Hence, we have  $\vec{a} \times \vec{b} = \vec{c}$ .

(c) Now, we will evaluate the vector  $\vec{b} \times \vec{c}$ 

Taking the scalar  $\frac{1}{7}$  common, here, we have  $(a_1, a_2, a_3) = (3, -6, 2)$  and  $(b_1, b_2, b_3) = (6, 2, -3)$ 

$$\Rightarrow \vec{b} \times \vec{c} = \frac{1}{7} \times \frac{1}{7} \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 3 & -6 & 2 \\ 6 & 2 & -3 \end{vmatrix}$$

$$\Rightarrow \vec{b} \times \vec{c} = \frac{1}{49} (i[(-6)(-3) - (2)(2)] - j[(3)(-3) - (6)(2)] \\ + \hat{k}[(3)(2) - (6)(-6)])$$

$$\Rightarrow \vec{b} \times \vec{c} = \frac{1}{49} (i[18 - 4] - j[-9 - 12] + \hat{k}[6 + 36])$$

$$\Rightarrow \vec{b} \times \vec{c} = \frac{1}{49} (14\hat{i} + 21\hat{j} + 42\hat{k})$$

$$\therefore \vec{b} \times \vec{c} = \frac{1}{7} (2\hat{i} + 3\hat{j} + 6\hat{k}) = \vec{a}$$
Hence, we have  $\vec{b} \times \vec{c} = \vec{a}$ .
(d) Now, we will evaluate the vector  $\vec{c} \times \vec{a}$ 
Taking the scalar  $\frac{1}{7}$  common, here, we have  $(a_1, a_2, a_3) = (6, 2, -3)$  and  $(b_1, b_2, b_3) = (2, -3)$ 

CLICK HERE

≫

3, 6)

$$\Rightarrow \vec{c} \times \vec{a} = \frac{1}{7} \times \frac{1}{7} \begin{vmatrix} \hat{1} & \hat{1} & \hat{k} \\ 6 & 2 & -3 \\ 2 & 3 & 6 \end{vmatrix}$$
$$\Rightarrow \vec{c} \times \vec{a} = \frac{1}{49} (\hat{1}[(2)(6) - (3)(-3)] - \hat{1}[(6)(6) - (2)(-3)] + \hat{k}[(6)(3) - (2)(2)])$$
$$\Rightarrow \vec{c} \times \vec{a} = \frac{1}{49} (\hat{1}[12 + 9] - \hat{1}[36 + 6] + \hat{k}[18 - 4])$$
$$\Rightarrow \vec{c} \times \vec{a} = \frac{1}{49} (21\hat{1} - 42\hat{1} + 14\hat{k})$$
$$\therefore \vec{c} \times \vec{a} = \frac{1}{7} (3\hat{1} - 6\hat{1} + 2\hat{k}) = \vec{b}$$

Hence, we have  $\vec{c} \times \vec{a} = \vec{b}$ .

Thus,  $\vec{a}, \vec{b}, \vec{c}$  is also another right handed orthogonal system of unit vectors.

#### 13. Question

If 
$$\left| \vec{a} \right| = 13$$
,  $\left| \vec{b} \right| = 5$  and  $\vec{a} \cdot \vec{b} = 60$ , then find  $\left| \vec{a} \times \vec{b} \right|$ .

#### Answer

Given  $|\vec{a}| = 2$ ,  $|\vec{b}| = 5$  and  $\vec{a} \cdot \vec{b} = 60$ 

We know the dot product of two vectors  $\vec{a}$  and  $\vec{b}$  forming an angle  $\theta$  is

$$\vec{a}.\vec{b} = |\vec{a}||\vec{b}|\cos\theta$$

 $\Rightarrow 60 = 13 \times 5 \times \cos\theta$ 

 $\Rightarrow 65 \cos \theta = 60$ 

$$\therefore \cos \theta = \frac{12}{13}$$

We also know the cross product of two vectors  $\vec{a}$  and  $\vec{b}$  forming an angle  $\theta$  is

$$\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$$

where  $_{\widehat{\mathbf{1}}}$  is a unit vector perpendicular to  $_{\widehat{\mathbf{3}}}$  and  $_{\widehat{\mathbf{b}}}$ 

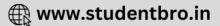
$$\Rightarrow \left|\vec{a} \times \vec{b}\right| = \left|\vec{a}\right| \left|\vec{b}\right| |\sin\theta| |\hat{n}|$$

But, we have  $\sin^2\theta + \cos^2\theta = 1$ 

$$\Rightarrow |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sqrt{1 - \cos^2 \theta} |\hat{n}|$$

$$\widehat{\mathbf{n}}$$
 is a unit vector  $\Rightarrow |\widehat{\mathbf{n}}| = 1$ 

$$\Rightarrow \left| \vec{a} \times \vec{b} \right| = 13 \times 5 \times \sqrt{1 - \left(\frac{12}{13}\right)^2} \times 1$$
$$\Rightarrow \left| \vec{a} \times \vec{b} \right| = 13 \times 5 \times \sqrt{1 - \frac{144}{169}}$$
$$\Rightarrow \left| \vec{a} \times \vec{b} \right| = 13 \times 5 \times \sqrt{\frac{25}{169}}$$



$$\therefore \left| \vec{a} \times \vec{b} \right| = 13 \times 5 \times \frac{5}{13} = 25$$

Thus,  $\left|\vec{a} \times \vec{b}\right| = 25$ 

# 14. Question

Find the angle between two vectors  $\vec{a}$  and  $\vec{b}$ , if  $|\vec{a} \times \vec{b}| = \vec{a} \cdot \vec{b}$ .

## Answer

Given  $|\vec{a} \times \vec{b}| = \vec{a} \cdot \vec{b}$ .

Let the angle between vectors  $\vec{a}$  and  $\vec{b}$  be  $\theta$ .

We know the cross product of two vectors  $\vec{a}$  and  $\vec{b}$  forming an angle  $\theta$  is

 $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$ 

where  $_{\widehat{\mathbf{n}}}$  is a unit vector perpendicular to  $_{\widehat{\mathbf{a}}}$  and  $_{\widehat{\mathbf{b}}}$ 

```
\Rightarrow |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| |\sin \theta| |\hat{n}|
```

 $\widehat{\mathbf{n}}$  is a unit vector  $\Rightarrow |\widehat{\mathbf{n}}| = 1$ 

 $\Rightarrow \left|\vec{a} \times \vec{b}\right| = \left|\vec{a}\right| \left|\vec{b}\right| |\sin \theta| \times 1$ 

 $\therefore |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta$ 

We also have the dot product of two vectors  $\vec{a}$  and  $\vec{b}$  forming an angle  $\theta$  is

```
\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta
```

```
But, it is given that |\vec{a} \times \vec{b}| = \vec{a} \cdot \vec{b}
```

```
\Rightarrow |\vec{a}||\vec{b}|\sin\theta = |\vec{a}||\vec{b}|\cos\theta
```

```
\Rightarrow \sin \theta = \cos \theta
```

 $\Rightarrow$  tan  $\theta = 1$ 

$$\therefore \theta = \frac{\pi}{4}$$

Thus, the angle between two vectors is  $\frac{\pi}{4}$ .

# 15. Question

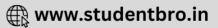
If  $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} \neq \vec{0}$ , then show that  $\vec{a} + \vec{c} = m\vec{b}$ , where m is any scalar.

# Answer

Given  $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} \neq \vec{0}$   $\Rightarrow \vec{a} \times \vec{b} - \vec{b} \times \vec{c} = \vec{0}$ We have  $\vec{b} \times \vec{c} = -(\vec{c} \times \vec{b})$   $\Rightarrow \vec{a} \times \vec{b} - [-(\vec{c} \times \vec{b})] = \vec{0}$  $\Rightarrow \vec{a} \times \vec{b} + \vec{c} \times \vec{b} = \vec{0}$ 

Using distributive property of vectors, we have





 $(\vec{a} + \vec{c}) \times \vec{b} = \vec{0}$ 

We know that if the cross product of two vectors is the null vector, then the vectors are parallel.

Here,  $(\vec{a} + \vec{c}) \times \vec{b} = \vec{0}$ 

So, vector  $(\vec{a} + \vec{c})$  is parallel to  $\vec{b}$ .

Thus,  $\vec{a} + \vec{c} = m \vec{b}$  for some scalar m.

## 16. Question

If 
$$|\vec{a}| = 2$$
,  $|\vec{b}| = 7$  and  $\vec{a} \times \vec{b} = 3\hat{i} + 2\hat{j} + 6\hat{k}$ , find the angle between  $\vec{a}$  and  $\vec{b}$ .

### Answer

Given  $|\vec{a}| = 2$ ,  $|\vec{b}| = 7$  and  $\vec{a} \times \vec{b} = 3\hat{i} + 2\hat{j} + 6\hat{k}$ 

Let the angle between vectors  $\vec{a}$  and  $\vec{b}$  be  $\theta$ .

We know the cross product of two vectors  $\vec{a}$  and  $\vec{b}$  forming an angle  $\theta$  is

```
\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}
```

where  $_{\widehat{n}}$  is a unit vector perpendicular to  $\vec{a}$  and  $\vec{b}$ 

 $\Rightarrow \left| \vec{a} \times \vec{b} \right| = \left| \vec{a} \right| \left| \vec{b} \right| |\sin \theta| |\hat{n}|$ 

 $\widehat{\mathbf{n}}$  is a unit vector  $\Rightarrow |\widehat{\mathbf{n}}| = 1$ 

 $\Rightarrow |\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}||\sin\theta| \times 1$ 

$$\Rightarrow |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta$$

Recall the magnitude of the vector  $x\hat{i} + y\hat{j} + z\hat{k}$  is

$$\begin{aligned} \left| x\hat{i} + y\hat{j} + z\hat{k} \right| &= \sqrt{x^2 + y^2 + z^2} \\ \Rightarrow \sqrt{3^2 + 2^2 + 6^2} &= 2 \times 7 \times \sin \theta \\ \Rightarrow \sqrt{9 + 4 + 36} &= 14 \sin \theta \\ \Rightarrow \sqrt{49} &= 14 \sin \theta \\ \Rightarrow 14 \sin \theta &= 7 \\ \Rightarrow \sin \theta &= \frac{7}{14} = \frac{1}{2} \\ \therefore \theta &= \frac{\pi}{6} \end{aligned}$$

Thus, the angle between two vectors is  $\frac{\pi}{\epsilon}$ .

# 17. Question

What inference can you draw if  $\vec{a} \times \vec{b} = \vec{0}$  and  $\vec{a} \cdot \vec{b} = 0$ .

### Answer

Given  $\vec{a} \times \vec{b} = \vec{0}$  and  $\vec{a} \cdot \vec{b} = 0$ .

To draw inferences from this, we shall analyze these two equations one at a time.

**CLICK HERE** 

>>>

🕀 www.studentbro.in

First, let us consider  $\vec{a} \times \vec{b} = \vec{0}$ .

We know the cross product of two vectors  $\vec{a}$  and  $\vec{b}$  forming an angle  $\theta$  is

 $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$ 

where  $_{\widehat{11}}$  is a unit vector perpendicular to  $_{\widehat{a}}$  and  $_{\widehat{b}}.$ 

So, if  $\vec{a} \times \vec{b} = \vec{0}$ , we have at least one of the following true –

- (a)  $|\vec{a}| = 0$
- (b)  $|\vec{b}| = 0$
- (c)  $|\vec{a}| = 0$  and  $|\vec{b}| = 0$
- (d)  $\vec{a}$  is parallel to  $\vec{b}$

Now, let us consider  $\vec{a}, \vec{b} = 0$ .

We have the dot product of two vectors  $\vec{a}$  and  $\vec{b}$  forming an angle  $\theta$  is

 $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$ 

So, if  $\vec{a}, \vec{b} = 0$ , we have at least one of the following true –

- (a)  $|\vec{a}| = 0$
- (b)  $|\vec{b}| = 0$
- (c)  $|\vec{a}| = 0$  and  $|\vec{b}| = 0$
- (d)  $\vec{a}$  is perpendicular to  $\vec{b}$

Given both these conditions are true.

Hence, the possibility (d) cannot be true as  $\vec{a}$  can't be both parallel and perpendicular to  $\vec{b}$  at the same time.

Thus, either one or both of  $\vec{a}$  and  $\vec{b}$  are zero vectors if we have  $\vec{a} \times \vec{b} = \vec{0}$  as well as  $\vec{a} \cdot \vec{b} = 0$ .

#### 18. Question

If  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  are three unit vectors such that  $\vec{a} \times \vec{b} = \vec{c}$ ,  $\vec{b} \times \vec{c} = \vec{a}$ ,  $\vec{c} \times \vec{a} = \vec{b}$ . Show that  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  form an orthonormal right handed triad of unit vectors.

#### Answer

Given  $\vec{a} \times \vec{b} = \vec{c}$ ,  $\vec{b} \times \vec{c} = \vec{a}$  and  $\vec{c} \times \vec{a} = \vec{b}$ .

Considering the first equation,  $\vec{c}$  is the cross product of the vectors  $\vec{a}$  and  $\vec{b}$ .

By the definition of the cross product of two vectors, we have  $\vec{c}$  perpendicular to both  $\vec{a}$  and  $\vec{b}$ .

Similarly, considering the second equation, we have  $\vec{a}$  perpendicular to both  $\vec{b}$  and  $\vec{c}$ .

Once again, considering the third equation, we have  $\mathbf{\overline{b}}$  perpendicular to both  $\mathbf{\overline{c}}$  and  $\mathbf{\overline{a}}$ .

From the above three statements, we can observe that the vectors  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  are mutually perpendicular.

It is also said that  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  are three unit vectors.

Thus,  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  form an orthonormal right handed triad of unit vectors.

19. Question



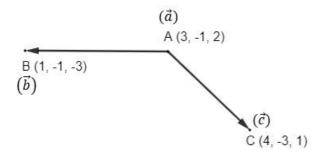


Find a unit vector perpendicular to the plane ABC, where the coordinates of A, B and C are A(3, -1, 2), B(1, -1, -3) and C(4, -3, 1).

#### Answer

Given points A(3, -1, 2), B(1, -1, -3) and C(4, -3, 1)

Let position vectors of the points A, B and C be $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  respectively.



We know position vector of a point (x, y, z) is given by  $x\hat{i} + y\hat{j} + z\hat{k}$ , where  $\hat{i}$ ,  $\hat{j}$  and  $\hat{k}$  are unit vectors along X, Y and Z directions.

 $\Rightarrow \vec{a} = (3)\hat{i} + (-1)\hat{j} + (2)\hat{k}$ 

 $\therefore \vec{a} = 3\hat{i} - \hat{j} + 2\hat{k}$ 

Similarly, we have  $\vec{b} = \hat{1} - \hat{1} - 3\hat{k}$  and  $\vec{c} = 4\hat{1} - 3\hat{j} + \hat{k}$ 

Plane ABC contains the two vectors  $\overrightarrow{AB}$  and  $\overrightarrow{AC}$ .

So, a vector perpendicular to this plane is also perpendicular to both of these vectors.

Recall the vector  $\overrightarrow{AB}$  is given by

 $\overrightarrow{AB}$  = position vector of B – position vector of A

 $\Rightarrow \overrightarrow{AB} = (\hat{1} - \hat{1} - 3\hat{k}) - (3\hat{1} - \hat{1} + 2\hat{k})$ 

$$\Rightarrow \overrightarrow{AB} = (1-3)\hat{i} + (-1+1)\hat{j} + (-3-2)\hat{k}$$

$$\therefore \overrightarrow{AB} = -2\hat{i} - 5\hat{k}$$

Similarly, the vector  $\overrightarrow{AC}$  is given by

 $\overrightarrow{AC}$  = position vector of C – position vector of A

$$\Rightarrow \overrightarrow{AC} = (4\hat{\imath} - 3\hat{\jmath} + 1\hat{k}) - (3\hat{\imath} - \hat{\jmath} + 2\hat{k})$$

$$\Rightarrow \overrightarrow{\text{AC}} = (4-3)\hat{\imath} + (-3+1)\hat{\jmath} + (1-2)\hat{k}$$

$$\therefore \overrightarrow{AC} = \hat{1} - 2\hat{j} - \hat{k}$$

We need to find a unit vector perpendicular to  $\overrightarrow{AB}$  and  $\overrightarrow{AC}$ .

Recall a vector that is perpendicular to two vectors  $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$  and  $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$  is

 $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$ 

Here, we have  $(a_1, a_2, a_3) = (-2, 0, -5)$  and  $(b_1, b_2, b_3) = (1, -2, -1)$ 

Get More Learning Materials Here :

🕀 www.studentbro.in

$$\Rightarrow \overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ -2 & 0 & -5 \\ 1 & -2 & -1 \end{vmatrix}$$
$$\Rightarrow \overrightarrow{AB} \times \overrightarrow{AC} = \hat{1}[(0)(-1) - (-2)(-5)] - \hat{1}[(-2)(-1) - (1)(-5)] \\ + \hat{k}[(-2)(-2) - (1)(0)]$$
$$\Rightarrow \overrightarrow{AB} \times \overrightarrow{AC} = \hat{1}[0 - 10] - \hat{1}[2 + 5] + \hat{k}[4 - 0]$$
$$\therefore \overrightarrow{AB} \times \overrightarrow{AC} = -10\hat{1} - 7\hat{j} + 4\hat{k}$$
Let the unit vector in the direction of  $\overrightarrow{AB} \times \overrightarrow{AC}$  be  $\hat{p}$ .

We know unit vector in the direction of a vector  $\vec{a}$  is given by  $\hat{a} = \frac{\vec{a}}{|\vec{a}|}$ .

$$\Rightarrow \hat{p} = \frac{\overrightarrow{AB} \times \overrightarrow{AC}}{|\overrightarrow{AB} \times \overrightarrow{AC}|}$$

Recall the magnitude of the vector  $x\hat{i} + y\hat{j} + z\hat{k}$  is

$$\begin{aligned} \left| x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}} \right| &= \sqrt{x^2 + y^2 + z^2} \\ \text{Now, we find } \left| \overrightarrow{AB} \times \overrightarrow{AC} \right|. \\ \left| \overrightarrow{AB} \times \overrightarrow{AC} \right| &= \sqrt{(-10)^2 + (-7)^2 + 4^2} \\ \Rightarrow \left| \overrightarrow{AB} \times \overrightarrow{AC} \right| &= \sqrt{100 + 49 + 16} \\ \therefore \left| \overrightarrow{AB} \times \overrightarrow{AC} \right| &= \sqrt{165} \\ \text{So, we have } \hat{\mathbf{p}} &= \frac{\overrightarrow{AB} \times \overrightarrow{AC}}{\sqrt{165}} \\ \Rightarrow \hat{\mathbf{p}} &= \frac{1}{\sqrt{165}} \left( -10\hat{\mathbf{i}} - 7\hat{\mathbf{j}} + 4\hat{\mathbf{k}} \right) \end{aligned}$$

Thus, the required unit vector that is perpendicular to plane ABC is  $\frac{1}{\sqrt{165}}(-10\hat{i}-7\hat{j}+4\hat{k})$ .

#### 20. Question

If a, b, c are the lengths of sides, BC, CA and AB of a triangle ABC, prove that  $\overrightarrow{BC} + \overrightarrow{CA} + \overrightarrow{AB} = \vec{0}$  and

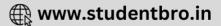
deduce that  $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ .

#### Answer

Given ABC is a triangle with BC = a, CA = b and AB = c.

$$\Rightarrow |\overrightarrow{BC}| = a, |\overrightarrow{CA}| = b \text{ and } |\overrightarrow{AB}| = c$$

Firstly, we need to prove  $\overrightarrow{BC} + \overrightarrow{CA} + \overrightarrow{AB} = \overrightarrow{0}$ .



From the triangle law of vector addition, we have

 $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ But, we know  $\overrightarrow{AC} = -\overrightarrow{CA}$   $\Rightarrow \overrightarrow{AB} + \overrightarrow{BC} = -\overrightarrow{CA}$   $\Rightarrow \overrightarrow{AB} + \overrightarrow{BC} = -\overrightarrow{CA}$   $\Rightarrow \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}$   $\therefore \overrightarrow{BC} + \overrightarrow{CA} + \overrightarrow{AB} = \overrightarrow{0}$ Let  $\overrightarrow{BC} = \overrightarrow{a}, \overrightarrow{CA} = \overrightarrow{b}$  and  $\overrightarrow{AB} = \overrightarrow{c}$   $\Rightarrow \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0} - - - -(\overrightarrow{I})$ By taking cross product with  $\overrightarrow{a}$ , we get  $\overrightarrow{a} \times (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \times \overrightarrow{0}$   $\Rightarrow \overrightarrow{a} \times \overrightarrow{a} + \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{0} [\because \overrightarrow{a} \times \overrightarrow{0} = \overrightarrow{0}]$   $\Rightarrow \overrightarrow{0} + \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{0} [\because \overrightarrow{a} \times \overrightarrow{a} = \overrightarrow{0}]$   $\Rightarrow \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{0}$   $\Rightarrow \overrightarrow{a} \times \overrightarrow{b} = -(\overrightarrow{a} \times \overrightarrow{c})$   $\Rightarrow \overrightarrow{a} \times \overrightarrow{b} = -(\overrightarrow{a} \times \overrightarrow{c})$ We know the error product of two vectors  $\overrightarrow{a}$ 

We know the cross product of two vectors  $\vec{a}$  and  $\vec{b}$  forming an angle  $\theta$  is

 $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$ 

where  $\hat{\mathbf{n}}$  is a unit vector perpendicular to  $\vec{\mathbf{a}}$  and  $\vec{\mathbf{b}}$ 

Here, all the vectors are coplanar. So, the unit vector perpendicular to  $\vec{a}$  and  $\vec{b}$  is same as that of  $\vec{b}$  and  $\vec{c}$ .

```
\Rightarrow |\vec{a}| |\vec{b}| \sin C = |\vec{c}| |\vec{a}| \sin B

\Rightarrow |\vec{b}| \sin C = |\vec{c}| \sin B

\Rightarrow b \sin C = c \sin B [\because |\vec{CA}| = b \text{ and } |\vec{AB}| = c]

\therefore \frac{b}{\sin B} = \frac{c}{\sin C} - - - - (II)

Consider equation (I) again.

We have \vec{a} + \vec{b} + \vec{c} = \vec{0}

By taking cross product with \vec{a}, we get

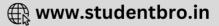
\vec{b} \times (\vec{a} + \vec{b} + \vec{c}) = \vec{b} \times \vec{0}

\Rightarrow \vec{b} \times \vec{a} + \vec{b} \times \vec{b} + \vec{b} \times \vec{c} = \vec{0} [\because \vec{b} \times \vec{0} = \vec{0}]

\Rightarrow \vec{b} \times \vec{a} + \vec{0} + \vec{b} \times \vec{c} = \vec{0} [\because \vec{b} \times \vec{b} = \vec{0}]

\Rightarrow \vec{b} \times \vec{a} + \vec{b} \times \vec{c} = \vec{0}

\Rightarrow \vec{b} \times \vec{a} + \vec{b} \times \vec{c} = \vec{0}
```



 $\Rightarrow \vec{b} \times \vec{c} = \vec{a} \times \vec{b}$   $\Rightarrow |\vec{b}| |\vec{c}| \sin A = |\vec{a}| |\vec{b}| \sin C$   $\Rightarrow |\vec{c}| \sin A = |\vec{a}| \sin C$   $\Rightarrow c \sin A = a \sin C [\because |\vec{AB}| = c \text{ and } |\vec{BC}| = a]$   $\therefore \frac{c}{\sin C} = \frac{a}{\sin A} - - - - (III)$ From (II) and (III), we get  $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ Thus,  $\vec{BC} + \vec{CA} + \vec{AB} = \vec{0}$  and  $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$  in  $\Delta ABC$ .

#### 21. Question

If  $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ , and  $\vec{b} = 2\hat{i} + 3\hat{j} - 5\hat{k}$ , then find  $\vec{a} \times \vec{b}$ . Verify that  $\vec{a}$  and  $\vec{a} \times \vec{b}$  are perpendicular to each other.

#### Answer

Given  $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$  and  $\vec{b} = 2\hat{i} + 3\hat{j} - 5\hat{k}$ 

Recall the cross product of two vectors  $\vec{a} = a_1\hat{1} + a_2\hat{j} + a_3\hat{k}$  and  $\vec{b} = b_1\hat{1} + b_2\hat{j} + b_3\hat{k}$  is

 $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$ 

Here, we have  $(a_1, a_2, a_3) = (1, -2, 3)$  and  $(b_1, b_2, b_3) = (2, 3, -5)$ 

$$\Rightarrow \vec{a} \times \vec{b} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 1 & -2 & 3 \\ 2 & 3 & -5 \end{vmatrix}$$
  
$$\Rightarrow \vec{a} \times \vec{b} = \hat{1}[(-2)(-5) - (3)(3)] - \hat{1}[(1)(-5) - (2)(3)] + \hat{k}[(1)(3) - (2)(-2)]$$
  
$$\Rightarrow \vec{a} \times \vec{b} = \hat{1}[10 - 9] - \hat{1}[-5 - 6] + \hat{k}[3 + 4]$$
  
$$\therefore \vec{a} \times \vec{b} = \hat{1} + 11\hat{1} + 7\hat{k}$$

We need to prove  $\vec{a}$  and  $\vec{a} \times \vec{b}$  are perpendicular to each other.

We know that two vectors are perpendicular if their dot product is zero.

So, we will evaluate  $\vec{a} \cdot (\vec{a} \times \vec{b})$ .

$$\vec{a}.(\vec{a} \times \vec{b}) = (\hat{1} - 2\hat{j} + 3\hat{k}).(\hat{1} + 11\hat{j} + 7\hat{k})$$

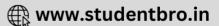
 $\Rightarrow \vec{a}.(\vec{a} \times \vec{b}) = \hat{1}.(\hat{1} + 11\hat{j} + 7\hat{k}) - 2\hat{j}.(\hat{1} + 11\hat{j} + 7\hat{k}) + 3\hat{k}.(\hat{1} + 11\hat{j} + 7\hat{k})$ 

But,  $\hat{\mathbf{i}}$ ,  $\hat{\mathbf{j}}$  and  $\hat{\mathbf{k}}$  are mutually perpendicular.

⇒ 
$$\vec{a} . (\vec{a} \times \vec{b}) = \hat{1} . \hat{1} - 2\hat{j} . 11\hat{j} + 3\hat{k} . 7\hat{k}$$
  
⇒  $\vec{a} . (\vec{a} \times \vec{b}) = \hat{1} . \hat{1} - 22(\hat{j} . \hat{j}) + 21(\hat{k} . \hat{k})$   
⇒  $\vec{a} . (\vec{a} \times \vec{b}) = 1 - 22 + 21$   
∴  $\vec{a} . (\vec{a} \times \vec{b}) = 0$   
Thus  $\vec{a} \times \vec{b} = \hat{1} + 11\hat{j} + 7\hat{k}$  and it is perpendicular to  $\vec{a}$ .

Get More Learning Materials Here :

CLICK HERE



### 22. Question

If  $\vec{p}$  and  $\vec{q}$  are unit vectors forming an angle of 30°, find the area of the parallelogram having  $\vec{a} = \vec{p} + 2\vec{q}$ and  $\vec{b} = 2\vec{p} + \vec{q}$  as its diagonals.

### Answer

Given two unit vectors  $\vec{p}$  and  $\vec{q}$  forming an angle of 30°.

We know the cross product of two vectors  $\vec{a}$  and  $\vec{b}$  forming an angle  $\theta$  is

 $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$ 

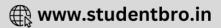
where  $_{\widehat{11}}$  is a unit vector perpendicular to  $_{\overline{a}}$  and  $_{\overline{b}}.$ 

 $\Rightarrow \vec{p} \times \vec{q} = |\vec{p}| |\vec{q}| \sin 30^{\circ} \hat{n}$  $\Rightarrow \vec{p} \times \vec{q} = 1 \times 1 \times \frac{1}{2} \times \hat{n}$  $\therefore \vec{p} \times \vec{q} = \frac{1}{2} \hat{n}$ 

Given two diagonals of parallelogram  $\vec{a} = \vec{p} + 2\vec{q}$  and  $\vec{b} = 2\vec{p} + \vec{q}$ 

Recall the area of the parallelogram whose diagonals are given by the two vectors  $\vec{a} = a_1 \hat{1} + a_2 \hat{1} + a_3 \hat{k}$  and  $\vec{\mathbf{b}} = \mathbf{b}_1 \hat{\mathbf{i}} + \mathbf{b}_2 \hat{\mathbf{j}} + \mathbf{b}_3 \hat{\mathbf{k}} \text{ is } \frac{1}{2} |\vec{\mathbf{a}} \times \vec{\mathbf{b}}|.$  $\Rightarrow \text{Area} = \frac{1}{2} |(\vec{p} + 2\vec{q}) \times (2\vec{p} + \vec{q})|$  $\Rightarrow \text{Area} = \frac{1}{2} |\vec{p} \times (2\vec{p} + \vec{q}) + 2\vec{q} \times (2\vec{p} + \vec{q})|$  $\Rightarrow \text{Area} = \frac{1}{2} |\vec{p} \times 2\vec{p} + \vec{p} \times \vec{q} + 2\vec{q} \times 2\vec{p} + 2\vec{q} \times \vec{q}|$ We have  $\vec{p} \times \vec{p} = \vec{q} \times \vec{q} = \vec{0}$  $\Rightarrow \text{Area} = \frac{1}{2} |\vec{p} \times \vec{q} + 4(\vec{q} \times \vec{p})|$ We have  $\vec{q} \times \vec{p} = -(\vec{p} \times \vec{q})$  $\Rightarrow \text{Area} = \frac{1}{2} |\vec{p} \times \vec{q} + 4[-(\vec{p} \times \vec{q})]|$  $\Rightarrow \text{Area} = \frac{1}{2} |\vec{p} \times \vec{q} - 4(\vec{p} \times \vec{q})|$  $\Rightarrow$  Area  $=\frac{1}{2}|-3(\vec{p}\times\vec{q})|$  $\Rightarrow$  Area  $=\frac{3}{2}|\vec{p}\times\vec{q}|$ But, we found  $\vec{p} \times \vec{q} = \frac{1}{2}\hat{n}$ .  $\Rightarrow$  Area  $=\frac{3}{2}\left|\frac{1}{2}\hat{n}\right|$  $\Rightarrow$  Area  $=\frac{3}{2} \times \frac{1}{2} |\hat{n}|$ 

 $\widehat{\mathbf{n}}$  is a unit vector  $\Rightarrow |\widehat{\mathbf{n}}| = 1$ 



$$\therefore \text{Area} = \frac{3}{2} \times \frac{1}{2} \times 1 = \frac{3}{4}$$

Thus, area of the parallelogram is  $\frac{3}{4}$  square units.

# 23. Question

For any two vectors  $\vec{a}$  and  $\vec{b}$ , prove that  $|\vec{a} \times \vec{b}|^2 = \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} \end{vmatrix}$ .

#### Answer

Let the angle between vectors  $\vec{a}$  and  $\vec{b}$  be  $\theta$ .

We know the cross product of two vectors  $\vec{a}$  and  $\vec{b}$  forming an angle  $\theta$  is

 $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$ 

where  $_{\widehat{11}}$  is a unit vector perpendicular to  $_{\widehat{a}}$  and  $_{\widehat{b}}$ 

$$\Rightarrow \left| \vec{a} \times \vec{b} \right| = \left| \vec{a} \right| \left| \vec{b} \right| |\sin \theta| |\hat{n}|$$

 $\hat{\mathbf{n}}$  is a unit vector  $\Rightarrow |\hat{\mathbf{n}}| = 1$ 

$$\Rightarrow \left|\vec{a} \times \vec{b}\right| = \left|\vec{a}\right| \left|\vec{b}\right| \sin\theta \times 1$$

$$|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta$$

Now, consider the LHS of the given expression.

$$\begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix}^{2} = (|\vec{a}||\vec{b}| \sin \theta)^{2}$$

$$\Rightarrow |\vec{a} \times \vec{b}|^{2} = |\vec{a}|^{2} |\vec{b}|^{2} \sin^{2} \theta$$
But, we have  $\sin^{2}\theta + \cos^{2}\theta = 1$ 

$$\Rightarrow |\vec{a} \times \vec{b}|^{2} = |\vec{a}|^{2} |\vec{b}|^{2} (1 - \cos^{2} \theta)$$

$$\Rightarrow |\vec{a} \times \vec{b}|^{2} = |\vec{a}|^{2} |\vec{b}|^{2} - |\vec{a}|^{2} |\vec{b}|^{2} \cos^{2} \theta$$

$$\Rightarrow |\vec{a} \times \vec{b}|^{2} = |\vec{a}|^{2} |\vec{b}|^{2} - (|\vec{a}||\vec{b}| \cos \theta)^{2}$$
We know  $\vec{a}.\vec{a} = |\vec{a}|^{2}, \vec{a}.\vec{b} = |\vec{a}| |\vec{b}| \cos \theta$  and  $\vec{b}.\vec{b} = |\vec{b}|^{2}$ 

$$\Rightarrow |\vec{a} \times \vec{b}|^{2} = (\vec{a}.\vec{a}) (\vec{b}.\vec{b}) - (\vec{a}.\vec{b})^{2}$$

$$\Rightarrow |\vec{a} \times \vec{b}|^{2} = (\vec{a}.\vec{a}) (\vec{b}.\vec{b}) - (\vec{a}.\vec{b}) (\vec{a}.\vec{b})$$
But  $\vec{a}.\vec{b} = \vec{b}.\vec{a}$  as dot product is commutative  

$$\Rightarrow |\vec{a} \times \vec{b}|^{2} = (\vec{a}.\vec{a}) (\vec{b}.\vec{b}) - (\vec{b}.\vec{a}) (\vec{a}.\vec{b})$$
Hus,  $|\vec{a} \times \vec{b}|^{2} = |\vec{a}.\vec{a} \quad \vec{a}.\vec{b}.\vec{b}|$ 
24. Question

Define  $\vec{a} \times \vec{b}$  and prove that  $|\vec{a} \times \vec{b}| = (\vec{a} \cdot \vec{b}) \tan \theta$ , where  $\theta$  is the angle between  $\vec{a}$  and  $\vec{b}$ .

## Answer

<u>Cross Product</u>: The vector or cross product of two non-zero vectors  $\vec{a}$  and  $\vec{b}$ , denoted by  $\vec{a} \times \vec{b}$ , is defined as

 $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$ 

where  $\theta$  is the angle between  $\vec{a}$  and  $\vec{b}$ ,  $0 \le \theta \le \pi$  and  $\hat{n}$  is a unit vector perpendicular to both  $\vec{a}$  and  $\vec{b}$ , such that  $\vec{a}$ ,  $\vec{b}$  and  $\hat{n}$  form a right handed system.

We have  $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$ 

 $\Rightarrow \left| \vec{a} \times \vec{b} \right| = \left| \vec{a} \right| \left| \vec{b} \right| |\sin \theta| |\hat{n}|$ 

 $\widehat{\mathbf{n}}$  is a unit vector  $\Rightarrow |\widehat{\mathbf{n}}| = 1$ 

 $\Rightarrow \left| \vec{a} \times \vec{b} \right| = \left| \vec{a} \right| \left| \vec{b} \right| |\sin \theta| \times 1$ 

$$|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta$$

But, we have the dot product of two vectors  $\vec{a}$  and  $\vec{b}$  forming an angle  $\theta$  as  $\vec{a}$ ,  $\vec{b} = |\vec{a}| |\vec{b}| \cos \theta$ 

Now, we divide these two equations.

$$\Rightarrow \frac{|\vec{a} \times \vec{b}|}{\vec{a}.\vec{b}} = \frac{|\vec{a}||\vec{b}|\sin\theta}{|\vec{a}||\vec{b}|\cos\theta}$$
$$\Rightarrow \frac{|\vec{a} \times \vec{b}|}{\vec{a}.\vec{b}} = \frac{\sin\theta}{\cos\theta}$$
$$\Rightarrow \frac{|\vec{a} \times \vec{b}|}{\vec{a}.\vec{b}} = \tan\theta$$
$$\therefore |\vec{a} \times \vec{b}| = (\vec{a}.\vec{b})\tan\theta$$
Thus,  $|\vec{a} \times \vec{b}| = (\vec{a}.\vec{b})\tan\theta$   
**25. Question**

If  $\left|\vec{a}\right| = \sqrt{26}$ ,  $\left|\vec{b}\right| = 7$  and  $\left|\vec{a} \times \vec{b}\right| = 35$ , find  $\vec{a} \cdot \vec{b}$ .

### Answer

Given  $|\vec{a}| = \sqrt{26}$ ,  $|\vec{b}| = 7$  and  $|\vec{a} \times \vec{b}| = 35$ 

We know the cross product of two vectors  $\vec{a}$  and  $\vec{b}$  forming an angle  $\theta$  is

 $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$ 

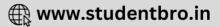
where  $_{\widehat{\mathbf{n}}}$  is a unit vector perpendicular to  $_{\widehat{\mathbf{a}}}$  and  $_{\widehat{\mathbf{b}}}$ 

$$\Rightarrow |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| |\sin \theta| |\hat{n}| \sqrt{26}$$
  
  $\hat{n}$  is a unit vector  $\Rightarrow |\hat{n}| = 1$   
  $\Rightarrow 35 = \sqrt{26} \times 7 \times \sin \theta \times 1$ 

 $\Rightarrow 35 = 7\sqrt{26}\sin\theta$ 

 $\Rightarrow \sqrt{26}\sin\theta = 5$ 





$$\therefore \sin \theta = \frac{5}{\sqrt{26}}$$

We also have the dot product of two vectors  $\vec{a}$  and  $\vec{b}$  forming an angle  $\theta$  is

2

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

$$\Rightarrow \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$
But, we have  $\sin^2 \theta + \cos^2 \theta = 1$ 

$$\Rightarrow \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \sqrt{1 - \sin^2 \theta}$$

$$\Rightarrow \vec{a} \cdot \vec{b} = \sqrt{26} \times 7 \times \sqrt{1 - \left(\frac{5}{\sqrt{26}}\right)^2}$$

$$\Rightarrow \vec{a} \cdot \vec{b} = 7\sqrt{26} \times \sqrt{1 - \frac{25}{26}}$$

$$\Rightarrow \vec{a} \cdot \vec{b} = 7\sqrt{26} \times \sqrt{\frac{1}{26}}$$

$$\Rightarrow \vec{a} \cdot \vec{b} = 7\sqrt{26} \times \sqrt{\frac{1}{26}}$$

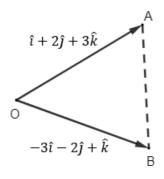
Thus,  $\vec{a} \cdot \vec{b} = 7$ 

#### 26. Question

Find the area of the triangle formed by O, A, B when  $\overrightarrow{OA} = \hat{i} + 2\hat{j} + 3\hat{k}$ ,  $\overrightarrow{OB} = -3\hat{i} - 2\hat{j} + \hat{k}$ .

#### Answer

Given  $\overrightarrow{OA} = \hat{1} + 2\hat{j} + 3\hat{k}$  and  $\overrightarrow{OB} = -3\hat{1} - 2\hat{j} + \hat{k}$  are two adjacent sides of a triangle.



Recall the area of the triangle whose adjacent sides are given by the two vectors  $\vec{a} = a_1\hat{1} + a_2\hat{j} + a_3\hat{k}$  and  $\vec{b} = b_1\hat{1} + b_2\hat{j} + b_3\hat{k}$  is  $\frac{1}{2}|\vec{a} \times \vec{b}|$  where

**CLICK HERE** 

>>>

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Here, we have  $(a_1, a_2, a_3) = (1, 2, 3)$  and  $(b_1, b_2, b_3) = (-3, -2, 1)$ 

$$\Rightarrow \overrightarrow{OA} \times \overrightarrow{OB} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ -3 & -2 & 1 \end{vmatrix}$$

 $\Rightarrow \overrightarrow{OA} \times \overrightarrow{OB} = \widehat{i}[(2)(1) - (-2)(3)] - \widehat{j}[(1)(1) - (-3)(3)] + \widehat{k}[(1)(-2) - (-3)(2)]$   $\Rightarrow \overrightarrow{OA} \times \overrightarrow{OB} = \widehat{i}[2 + 6] - \widehat{j}[1 + 9] + \widehat{k}[-2 + 6]$   $\therefore \overrightarrow{OA} \times \overrightarrow{OB} = 8\widehat{i} - 10\widehat{j} + 4\widehat{k}$ Recall the magnitude of the vector  $\widehat{x}\widehat{i} + \widehat{y}\widehat{j} + \widehat{z}\widehat{k}$  is  $|\widehat{x}\widehat{i} + \widehat{y}\widehat{j} + \widehat{z}\widehat{k}| = \sqrt{x^2 + y^2 + z^2}$ Now, we find  $|\overrightarrow{OA} \times \overrightarrow{OB}|$ .  $|\overrightarrow{OA} \times \overrightarrow{OB}| = \sqrt{8^2 + (-10)^2 + 4^2}$   $\Rightarrow |\overrightarrow{OA} \times \overrightarrow{OB}| = \sqrt{64 + 100 + 16}$   $\Rightarrow |\overrightarrow{OA} \times \overrightarrow{OB}| = \sqrt{180} = 6\sqrt{5}$   $\therefore \frac{|\overrightarrow{OA} \times \overrightarrow{OB}|}{2} = \frac{6\sqrt{5}}{2} = 3\sqrt{5}$ 

Thus, area of the triangle is  $3\sqrt{5}$  square units.

#### 27. Question

Let  $\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$ ,  $\vec{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$  and  $\vec{c} = 2\hat{i} - \hat{j} + 4\hat{k}$ . Find a vector  $\vec{a}$  which is perpendicular to both  $\vec{a}$  and  $\vec{b}$  and  $\vec{c} \cdot \vec{d} = 15$ .

CLICK HERE

>>>

🕀 www.studentbro.in

#### Answer

Given  $\vec{a} = \hat{1} + 4\hat{j} + 2\hat{k}$ ,  $\vec{b} = 3\hat{1} - 2\hat{j} + 7\hat{k}$  and  $\vec{c} = 2\hat{1} - \hat{j} + 4\hat{k}$ 

We need to find a vector  $\vec{d}$  perpendicular to  $\vec{a}$  and  $\vec{b}$  such that  $\vec{c}$ ,  $\vec{d} = 15$ .

Recall a vector that is perpendicular to two vectors  $\vec{a} = a_1\hat{1} + a_2\hat{j} + a_3\hat{k}$  and  $\vec{b} = b_1\hat{1} + b_2\hat{j} + b_3\hat{k}$  is

|                            | î              | ĵ              | ƙ             |
|----------------------------|----------------|----------------|---------------|
| $\vec{a} \times \vec{b} =$ | a <sub>1</sub> | $a_2$          | k<br>a₃<br>b₃ |
|                            | b <sub>1</sub> | b <sub>2</sub> | b3            |

Here, we have  $(a_1, a_2, a_3) = (1, 4, 2)$  and  $(b_1, b_2, b_3) = (3, -2, 7)$ 

$$\begin{aligned} \Rightarrow \vec{a} \times \vec{b} &= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 4 & 2 \\ 3 & -2 & 7 \end{vmatrix} \\ \Rightarrow \vec{a} \times \vec{b} &= \hat{i}[(4)(7) - (-2)(2)] - \hat{j}[(1)(7) - (3)(2)] + \hat{k}[(1)(-2) - (3)(4)] \\ \Rightarrow \vec{a} \times \vec{b} &= \hat{i}[28 + 4] - \hat{j}[7 - 6] + \hat{k}[-2 - 12] \\ \therefore \vec{a} \times \vec{b} &= 32\hat{i} - \hat{j} - 14\hat{k} \\ \text{So, } \vec{d} \text{ is a vector parallel to } \vec{a} \times \vec{b}. \\ \text{Let } \vec{d} &= \lambda(\vec{a} \times \vec{b}) \text{ for some scalar } \lambda. \\ \Rightarrow \vec{d} &= \lambda(32\hat{i} - \hat{j} - 14\hat{k}) \\ \text{We have } \vec{c}.\vec{d} &= 15. \\ \Rightarrow (2\hat{i} - \hat{j} + 4\hat{k}). [\lambda(32\hat{i} - \hat{j} - 14\hat{k})] &= 15 \end{aligned}$$

 $\Rightarrow \lambda [(2\hat{i} - \hat{j} + 4\hat{k}). (32\hat{i} - \hat{j} - 14\hat{k})] = 15$   $\Rightarrow \lambda [(2)(32) + (-1)(-1) + (4)(-14)] = 15$   $\Rightarrow \lambda (64 + 1 - 56) = 15$   $\Rightarrow 9\lambda = 15$   $\therefore \lambda = \frac{15}{9} = \frac{5}{3}$ So, we have  $\vec{d} = \frac{5}{3}(32\hat{i} - \hat{j} - 14\hat{k})$ Thus,  $\vec{d} = \frac{5}{3}(32\hat{i} - \hat{j} - 14\hat{k})$ 

#### 28. Question

Find a unit vector perpendicular to each of the vectors  $\vec{a} + \vec{b}$  and  $\vec{a} - \vec{b}$ , where  $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$  and  $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$ .

#### Answer

Given  $\vec{a}=3\hat{\imath}+2\hat{\jmath}+2\hat{k}$  and  $\vec{b}=\hat{\imath}+2\hat{\jmath}-2\hat{k}$ 

We need to find the vector perpendicular to both the vectors  $\vec{a} + \vec{b}$  and  $\vec{a} - \vec{b}$ .

$$\vec{a} + \vec{b} = (3\hat{i} + 2\hat{j} + 2\hat{k}) + (\hat{i} + 2\hat{j} - 2\hat{k})$$
  

$$\Rightarrow \vec{a} + \vec{b} = (3 + 1)\hat{i} + (2 + 2)\hat{j} + (2 - 2)\hat{k}$$
  

$$\therefore \vec{a} + \vec{b} = 4\hat{i} + 4\hat{j}$$
  

$$\vec{a} - \vec{b} = (3\hat{i} + 2\hat{j} + 2\hat{k}) - (\hat{i} + 2\hat{j} - 2\hat{k})$$
  

$$\Rightarrow \vec{a} - \vec{b} = (3 - 1)\hat{i} + (2 - 2)\hat{j} + (2 + 2)\hat{k}$$
  

$$\therefore \vec{a} - \vec{b} = 2\hat{i} + 4\hat{k}$$

Recall a vector that is perpendicular to two vectors  $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$  and  $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$  is

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Here, we have  $(a_1, a_2, a_3) = (4, 4, 0)$  and  $(b_1, b_2, b_3) = (2, 0, 4)$ 

$$\Rightarrow (\vec{a} + \vec{b}) \times (\vec{a} - \vec{b}) = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 4 & 4 & 0 \\ 2 & 0 & 4 \end{vmatrix}$$

$$\Rightarrow (\vec{a} + \vec{b}) \times (\vec{a} - \vec{b}) = \hat{1}[(4)(4) - (0)(0)] - \hat{1}[(4)(4) - (2)(0)] + \hat{k}[(4)(0) - (2)(4)]$$

$$\Rightarrow (\vec{a} + \vec{b}) \times (\vec{a} - \vec{b}) = \hat{1}[16 - 0] - \hat{1}[16 - 0] + \hat{k}[0 - 8]$$

$$\therefore (\vec{a} + \vec{b}) \times (\vec{a} - \vec{b}) = 16\hat{1} - 16\hat{j} - 8\hat{k}$$
Let the unit vector in the direction of  $(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})$  be  $\hat{p}$ .
We know unit vector in the direction of a vector  $\vec{a}$  is given by  $\hat{a} = \frac{\vec{a}}{|\vec{a}|}$ .

Get More Learning Materials Here : 💵 🗲

CLICK HERE

$$\Rightarrow \hat{p} = \frac{\left(\vec{a} + \vec{b}\right) \times \left(\vec{a} - \vec{b}\right)}{\left|\left(\vec{a} + \vec{b}\right) \times \left(\vec{a} - \vec{b}\right)\right|}$$

Recall the magnitude of the vector  $x\hat{i} + y\hat{j} + z\hat{k}$  is

$$\begin{split} |x\hat{i} + y\hat{j} + z\hat{k}| &= \sqrt{x^2 + y^2 + z^2} \\ \text{Now, we find } |(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})| \\ |(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})| &= \sqrt{16^2 + (-16)^2 + (-8)^2} \\ \Rightarrow |(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})| &= \sqrt{256 + 256 + 64} \\ \therefore |(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})| &= \sqrt{576} = 24 \\ \text{So, we have } \hat{p} &= \frac{(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})}{24} \\ \Rightarrow \hat{p} &= \frac{1}{24} (16\hat{i} - 16\hat{j} - 8\hat{k}) \\ \therefore \hat{p} &= \frac{1}{3} (2\hat{i} - 2\hat{j} - \hat{k}) \end{split}$$

Thus, the required unit vector that is perpendicular to both  $\vec{a}$  and  $\vec{b}$  is  $\frac{1}{3}(2\hat{i}-2\hat{j}-\hat{k})$ .

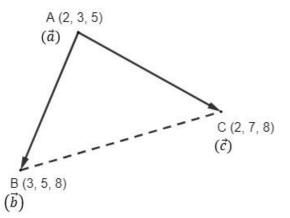
#### 29. Question

Using vectors, find the area of the triangle with vertices A(2, 3, 5), B(3, 5, 8) and C(2, 7, 8).

#### Answer

Given three points A(2, 3, 5), B(3, 5, 8) and C(2, 7, 8) forming a triangle.

Let position vectors of the vertices A, B and C of  $\triangle$ ABC be $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  respectively.



We know position vector of a point (x, y, z) is given by  $x\hat{i} + y\hat{j} + z\hat{k}$ , where  $\hat{i}$ ,  $\hat{j}$  and  $\hat{k}$  are unit vectors along X, Y and Z directions.

 $\Rightarrow \vec{a} = (2)\hat{i} + (3)\hat{j} + (5)\hat{k}$ 

 $\therefore \vec{a} = 2\hat{i} + 3\hat{j} + 5\hat{k}$ 

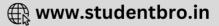
Similarly, we have  $\vec{b} = 3\hat{i} + 5\hat{j} + 8\hat{k}$  and  $\vec{c} = 2\hat{i} + 7\hat{j} + 8\hat{k}$ 

To find area of  $\triangle ABC$ , we need to find at least two sides of the triangle. So, we will find vectors  $\overrightarrow{AB}$  and  $\overrightarrow{AC}$ .

Recall the vector  $\overrightarrow{AB}$  is given by

 $\overrightarrow{AB}$  = position vector of B – position vector of A





$$\Rightarrow \overrightarrow{AB} = \overrightarrow{b} - \overrightarrow{a}$$

$$\Rightarrow \overrightarrow{AB} = (3\widehat{i} + 5\widehat{j} + 8\widehat{k}) - (2\widehat{i} + 3\widehat{j} + 5\widehat{k})$$

$$\Rightarrow \overrightarrow{AB} = (3 - 2)\widehat{i} + (5 - 3)\widehat{j} + (8 - 5)\widehat{k}$$

$$\therefore \overrightarrow{AB} = \widehat{i} + 2\widehat{j} + 3\widehat{k}$$
Similarly, the vector  $\overrightarrow{AC}$  is given by
$$\overrightarrow{AC} = \text{position vector of } C - \text{position vector of } A$$

$$\Rightarrow \overrightarrow{AC} = \widehat{c} - \overrightarrow{a}$$

$$\Rightarrow \overrightarrow{AC} = (2\widehat{i} + 7\widehat{j} + 8\widehat{k}) - (2\widehat{i} + 3\widehat{j} + 5\widehat{k})$$

$$\Rightarrow \overrightarrow{AC} = (2 - 2)\widehat{i} + (7 - 3)\widehat{j} + (8 - 5)\widehat{k}$$

$$\therefore \overrightarrow{AC} = 4\widehat{j} + 3\widehat{k}$$

Recall the area of the triangle whose adjacent sides are given by the two vectors  $\vec{a} = a_1\hat{1} + a_2\hat{j} + a_3\hat{k}$  and  $\vec{b} = b_1\hat{1} + b_2\hat{j} + b_3\hat{k}$  is  $\frac{1}{2}|\vec{a} \times \vec{b}|$  where

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Here, we have  $(a_1, a_2, a_3) = (1, 2, 3)$  and  $(b_1, b_2, b_3) = (0, 4, 3)$ 

$$\Rightarrow \overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ 0 & 4 & 3 \end{vmatrix}$$
  
$$\Rightarrow \overrightarrow{AB} \times \overrightarrow{AC} = \hat{i}[(2)(3) - (4)(3)] - \hat{j}[(1)(3) - (0)(3)] + \hat{k}[(1)(4) - (0)(2)]$$
  
$$\Rightarrow \overrightarrow{AB} \times \overrightarrow{AC} = \hat{i}[6 - 12] - \hat{j}[3 - 0] + \hat{k}[4 - 0]$$
  
$$\therefore \overrightarrow{AB} \times \overrightarrow{AC} = -6\hat{i} - 3\hat{j} + 4\hat{k}$$

Recall the magnitude of the vector  $x \hat{\imath} + y \hat{\jmath} + z \hat{k}$  is

$$|x\hat{i} + y\hat{j} + z\hat{k}| = \sqrt{x^2 + y^2 + z^2}$$
Now, we find  $|\overrightarrow{AB} \times \overrightarrow{AC}|$ .  

$$|\overrightarrow{AB} \times \overrightarrow{AC}| = \sqrt{(-6)^2 + (-3)^2 + 4^2}$$

$$\Rightarrow |\overrightarrow{AB} \times \overrightarrow{AC}| = \sqrt{36 + 9 + 16}$$

$$\Rightarrow |\overrightarrow{AB} \times \overrightarrow{AC}| = \sqrt{61}$$

$$\therefore \frac{|\overrightarrow{AB} \times \overrightarrow{AC}|}{2} = \frac{\sqrt{61}}{2}$$

Thus, area of the triangle is  $\frac{\sqrt{61}}{2}$  square units.

# 30. Question

If  $\vec{a} = 2\hat{i} - 3\hat{j} + \hat{k}$ ,  $\vec{b} = -\hat{i} + \hat{k}$ ,  $\vec{c} = 2\hat{j} - \hat{k}$  are three vectors, find the area of the parallelogram having diagonals  $(\vec{a} + \vec{b})$  and  $(\vec{b} + \vec{c})$ .

**CLICK HERE** 

≫

R www.studentbro.in

### Answer

Given  $\vec{a} = 2\hat{i} - 3\hat{j} + \hat{k}$ ,  $\vec{b} = -\hat{i} + \hat{k}$  and  $\vec{c} = 2\hat{j} - \hat{k}$ 

We need to find area of the parallelogram with vectors  $\vec{a} + \vec{b}$  and  $\vec{b} + \vec{c}$  as diagonals.

$$\vec{a} + \vec{b} = (2\hat{i} - 3\hat{j} + \hat{k}) + (-\hat{i} + \hat{k})$$
  

$$\Rightarrow \vec{a} + \vec{b} = (2 - 1)\hat{i} + (-3)\hat{j} + (1 + 1)\hat{k}$$
  

$$\therefore \vec{a} + \vec{b} = \hat{i} - 3\hat{j} + 2\hat{k}$$
  

$$\vec{b} + \vec{c} = (-\hat{i} + \hat{k}) + (2\hat{j} - \hat{k})$$
  

$$\Rightarrow \vec{b} + \vec{c} = (-1)\hat{i} + (2)\hat{j} + (1 - 1)\hat{k}$$
  

$$\therefore \vec{b} + \vec{c} = -\hat{i} + 2\hat{j}$$

Recall the area of the parallelogram whose diagonals are given by the two vectors  $\vec{a} = a_1\hat{1} + a_2\hat{1} + a_3\hat{k}$  and  $\vec{b} = b_1\hat{1} + b_2\hat{j} + b_3\hat{k}$  is  $\frac{1}{2}|\vec{a} \times \vec{b}|$  where

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Here, we have  $(a_1, a_2, a_3) = (1, -3, 2)$  and  $(b_1, b_2, b_3) = (-1, 2, 0)$ 

$$\Rightarrow (\vec{a} + \vec{b}) \times (\vec{b} + \vec{c}) = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 1 & -3 & 2 \\ -1 & 2 & 0 \end{vmatrix}$$

$$\Rightarrow (\vec{a} + \vec{b}) \times (\vec{b} + \vec{c}) = \hat{1}[(-3)(0) - (2)(2)] - \hat{1}[(1)(0) - (-1)(2)] + \hat{k}[(1)(2) - (-1)(-3)]$$

$$\Rightarrow (\vec{a} + \vec{b}) \times (\vec{b} + \vec{c}) = \hat{1}[0 - 4] - \hat{1}[0 + 2] + \hat{k}[2 - 3]$$

$$\therefore (\vec{a} + \vec{b}) \times (\vec{b} + \vec{c}) = -4\hat{1} - 2\hat{1} - \hat{k}$$

Recall the magnitude of the vector  $x\hat{i} + y\hat{j} + z\hat{k}$  is

$$\begin{aligned} |x\hat{i} + y\hat{j} + z\hat{k}| &= \sqrt{x^2 + y^2 + z^2} \\ \text{Now, we find } |(\vec{a} + \vec{b}) \times (\vec{b} + \vec{c})|. \\ |(\vec{a} + \vec{b}) \times (\vec{b} + \vec{c})| &= \sqrt{(-4)^2 + (-2)^2 + (-1)^2} \\ \Rightarrow |(\vec{a} + \vec{b}) \times (\vec{b} + \vec{c})| &= \sqrt{16 + 4 + 1} \\ \Rightarrow |(\vec{a} + \vec{b}) \times (\vec{b} + \vec{c})| &= \sqrt{21} \\ \therefore \frac{|(\vec{a} + \vec{b}) \times (\vec{b} + \vec{c})|}{2} &= \frac{\sqrt{21}}{2} \end{aligned}$$

Thus, area of the parallelogram is  $\frac{\sqrt{21}}{2}$  square units.

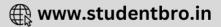
### 31. Question

The two adjacent sides of a parallelogram are  $2\hat{i} - 4\hat{j} + 5\hat{k}$  and  $\hat{i} - 2\hat{j} - 3\hat{k}$ . Find the unit vector parallel to one of its diagonals. Also, find its area.

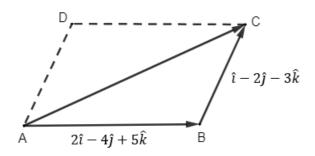
#### Answer

Let ABCD be a parallelogram with sides AB and AC given.





We have  $\overrightarrow{AB} = 2\hat{1} - 4\hat{j} + 5\hat{k}$  and  $\overrightarrow{BC} = \hat{1} - 2\hat{j} - 3\hat{k}$ 



We need to find unit vector parallel to diagonal  $\overrightarrow{AC}$ .

From the triangle law of vector addition, we have

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$$
  

$$\Rightarrow \overrightarrow{AC} = (2\hat{i} - 4\hat{j} + 5\hat{k}) + (\hat{i} - 2\hat{j} - 3\hat{k})$$
  

$$\Rightarrow \overrightarrow{AC} = (2 + 1)\hat{i} + (-4 - 2)\hat{j} + (5 - 3)\hat{k}$$
  

$$\therefore \overrightarrow{AC} = 3\hat{i} - 6\hat{j} + 2\hat{k}$$

Let the unit vector in the direction of  $\overrightarrow{AC}$  be  $\widehat{p}$ .

We know unit vector in the direction of a vector  $\vec{a}$  is given by  $\hat{a} = \frac{\vec{a}}{|\vec{a}|}$ .

$$\Rightarrow \hat{p} = \frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$$

Recall the magnitude of the vector  $x\hat{i} + y\hat{j} + z\hat{k}$  is

$$|x\hat{i} + y\hat{j} + z\hat{k}| = \sqrt{x^2 + y^2 + z^2}$$

Now, we find AC.

$$\left| \overrightarrow{AC} \right| = \sqrt{3^2 + (-6)^2 + 2^2}$$

 $\Rightarrow \left| \overrightarrow{AC} \right| = \sqrt{9 + 36 + 4}$ 

 $\therefore \left| \overrightarrow{AC} \right| = \sqrt{49} = 7$ 

So, we have  $\hat{\mathbf{p}} = \frac{\vec{\mathbf{AC}}}{7}$ 

$$\Rightarrow \hat{\mathbf{p}} = \frac{1}{7} \left( 3\hat{\mathbf{i}} - 6\hat{\mathbf{j}} + 2\hat{\mathbf{k}} \right)$$

Thus, the required unit vector that is parallel to diaonal  $\overrightarrow{AC}$  is  $\frac{1}{2}(3\hat{i}-6\hat{j}+2\hat{k})$ .

Now, we have to find the area of parallelogram ABCD.

Recall the area of the parallelogram whose adjacent sides are given by the two vectors  $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and  $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$  is  $|\vec{a} \times \vec{b}|$  where

**CLICK HERE** 

R www.studentbro.in

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Here, we have  $(a_1, a_2, a_3) = (2, -4, 5)$  and  $(b_1, b_2, b_3) = (1, -2, -3)$ 

 $\Rightarrow \overrightarrow{AB} \times \overrightarrow{BC} = \begin{vmatrix} \widehat{1} & \widehat{j} & k \\ 2 & -4 & 5 \\ 1 & -2 & -3 \end{vmatrix}$  $\Rightarrow \overrightarrow{AB} \times \overrightarrow{BC} = \widehat{1}[(-4)(-3) - (-2)(5)] - \widehat{j}[(2)(-3) - (1)(5)] \\ + \widehat{k}[(2)(-2) - (1)(-4)]$  $\Rightarrow \overrightarrow{AB} \times \overrightarrow{BC} = \widehat{1}[12 + 10] - \widehat{j}[-6 - 5] + \widehat{k}[-4 + 4]$  $\therefore \overrightarrow{AB} \times \overrightarrow{BC} = 22\widehat{1} + 11\widehat{j}$ Recall the magnitude of the vector  $\widehat{x1} + \widehat{y1} + \widehat{zk}$  is  $|\widehat{x1} + \widehat{y1} + \widehat{zk}| = \sqrt{x^2 + y^2 + z^2}$ Now, we find  $|\overrightarrow{AB} \times \overrightarrow{BC}|$ . $|\overrightarrow{AB} \times \overrightarrow{BC}| = \sqrt{22^2 + 11^2 + 0^2}$  $\Rightarrow |\overrightarrow{AB} \times \overrightarrow{BC}| = \sqrt{484 + 121}$  $\therefore |\overrightarrow{AB} \times \overrightarrow{BC}| = \sqrt{605} = 11\sqrt{5}$ 

Thus, area of the parallelogram is  $11\sqrt{5}$  square units.

## 32. Question

If either  $\vec{a} = \vec{0}$  or  $\vec{b} = \vec{0}$ , then  $\vec{a} \times \vec{b} = \vec{0}$ . Is the converse true? Justify your answer with an example.

#### Answer

We know  $\vec{a} \times \vec{b} = \vec{0}$  if either  $\vec{a} = \vec{0}$  or  $\vec{b} = \vec{0}$ .

To verify if the converse is true, we suppose  $\vec{a} \times \vec{b} = \vec{0}$ 

We know the cross product of two vectors  $\vec{a}$  and  $\vec{b}$  forming an angle  $\theta$  is

 $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$ 

where  $\hat{\mathbf{n}}$  is a unit vector perpendicular to  $\mathbf{\vec{a}}$  and  $\mathbf{\vec{b}}$ .

So, if  $\vec{a} \times \vec{b} = \vec{0}$ , we have at least one of the following true –

- (a)  $|\vec{a}| = 0$
- (b)  $|\vec{b}| = 0$
- (c)  $|\vec{a}| = 0$  and  $|\vec{b}| = 0$
- (d)  $\vec{a}$  is parallel to  $\vec{b}$

The first three possibilities mean that either  $\vec{a} = \vec{0}$  or  $\vec{b} = \vec{0}$  or both of them are true.

However, there is another possibility that  $\vec{a} \times \vec{b} = \vec{0}$  when the two vectors are parallel. Thus, the converse is not true.

We will justify this using an example.

Given  $\vec{a} = \hat{i} + 3\hat{j} - 2\hat{k}$  and  $\vec{b} = 2\vec{a} = 2\hat{i} + 6\hat{j} - 4\hat{k}$ 

Recall the cross product of two vectors  $\vec{a} = a_1\hat{1} + a_2\hat{1} + a_3\hat{k}$  and  $\vec{b} = b_1\hat{1} + b_2\hat{1} + b_3\hat{k}$  is

Get More Learning Materials Here : 📕



# Regional www.studentbro.in

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Here, we have  $(a_1, a_2, a_3) = (1, 3, -2)$  and  $(b_1, b_2, b_3) = (2, 6, -4)$ 

$$\Rightarrow \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 3 & -2 \\ 2 & 6 & -4 \end{vmatrix}$$
  
$$\Rightarrow \vec{a} \times \vec{b} = \hat{i}[(3)(-4) - (6)(-2)] - \hat{j}[(1)(-4) - (2)(-2)] + \hat{k}[(1)(6) - (2)(3)]$$
  
$$\Rightarrow \vec{a} \times \vec{b} = \hat{i}[-12 + 12] - \hat{j}[-4 + 4] + \hat{k}[6 - 6]$$
  
$$\therefore \vec{a} \times \vec{b} = 0\hat{i} - 0\hat{j} + 0\hat{k} = \vec{0}$$

Hence, we have  $\vec{a} \times \vec{b} = \vec{0}$  even when  $\vec{a} \neq \vec{0}$  and  $\vec{b} \neq \vec{0}$ .

Thus, the converse of the given statement is not true.

#### 33. Question

$$\text{If } \vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}, \vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k} \text{ and } \vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}, \text{ then verify that } \vec{a} = \left(\vec{b} + \vec{c}\right) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}.$$

#### Answer

Given  $\vec{a} = a_1 \hat{1} + a_2 \hat{1} + a_3 \hat{k} \cdot \vec{b} = b_1 \hat{1} + b_2 \hat{1} + b_3 \hat{k}$  and  $\vec{c} = c_1 \hat{1} + c_2 \hat{1} + c_3 \hat{k}$ We need to verify that  $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$ 

$$\vec{b} + \vec{c} = (b_1\hat{i} + b_2\hat{j} + b_3\hat{k}) + (c_1\hat{i} + c_2\hat{j} + c_3\hat{k})$$

 $\because \vec{b} + \vec{c} = (b_1 + c_1)\hat{i} + (b_2 + c_2)\hat{j} + (b_3 + c_3)\hat{k}$ 

First, we will find  $\vec{a} \times (\vec{b} + \vec{c})$ .

Recall the cross product of two vectors  $\vec{a} = a_1\hat{1} + a_2\hat{j} + a_3\hat{k}$  and  $\vec{b} = b_1\hat{1} + b_2\hat{j} + b_3\hat{k}$  is

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
  

$$\Rightarrow \vec{a} \times (\vec{b} + \vec{c}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 + c_1 & b_2 + c_2 & b_3 + c_3 \end{vmatrix}$$
  

$$\Rightarrow \vec{a} \times (\vec{b} + \vec{c}) = \hat{i}[(a_2)(b_3 + c_3) - (b_2 + c_2)(a_3)] \\ -\hat{j}[(a_1)(b_3 + c_3) - (b_1 + c_1)(a_3)] \\ +\hat{k}[(a_1)(b_2 + c_2) - (b_1 + c_1)(a_2)]$$
  

$$\therefore \vec{a} \times (\vec{b} + \vec{c}) = \hat{i}(a_2b_3 + a_2c_3 - b_2a_3 - c_2a_3) - \hat{j}(a_1b_3 + a_1c_3 - b_1a_3 - c_1a_3) \\ +\hat{k}(a_1b_2 + a_1c_2 - b_1a_2 - c_1a_2)$$
  
Now, we will find  $\vec{a} \times \vec{b}$ .

We have 
$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

$$\Rightarrow \vec{a} \times \vec{b} = \hat{i}[(a_2)(b_3) - (b_2)(a_3)] - \hat{j}[(a_1)(b_3) - (b_1)(a_3)] + \hat{k}[(a_1)(b_2) - (b_1)(a_2)]$$

$$\therefore \vec{a} \times \vec{b} = \hat{i}(a_2b_3 - b_2a_3) - \hat{j}(a_1b_3 - b_1a_3) + \hat{k}(a_1b_2 - b_1a_2)$$

Finally, we will find  $\vec{a} \times \vec{c}$ .

We have 
$$\vec{a} \times \vec{c} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
  

$$\Rightarrow \vec{a} \times \vec{c} = \hat{1}[(a_2)(c_3) - (c_2)(a_3)] - \hat{1}[(a_1)(c_3) - (c_1)(a_3)] \\ + \hat{k}[(a_1)(c_2) - (c_1)(a_2)]$$

$$\therefore \vec{a} \times \vec{c} = \hat{1}(a_2c_3 - c_2a_3) - \hat{1}(a_1c_3 - c_1a_3) + \hat{k}(a_1c_2 - c_1a_2)$$
So,  $\vec{a} \times \vec{b} + \vec{a} \times \vec{c} = [\hat{1}(a_2b_3 - b_2a_3) - \hat{1}(a_1b_3 - b_1a_3) + \hat{k}(a_1b_2 - b_1a_2)] + [\hat{1}(a_2c_3 - c_2a_3) - \hat{1}(a_1c_3 - c_1a_3) + \hat{k}(a_1c_2 - c_1a_2)]$ 

$$\Rightarrow \vec{a} \times \vec{b} + \vec{a} \times \vec{c} = \hat{1}(a_2b_3 - b_2a_3 + a_2c_3 - c_2a_3) - \hat{1}(a_1b_3 - b_1a_3 + a_1c_3 - c_1a_3) + \hat{k}(a_1b_2 - b_1a_2 + a_1c_2 - c_1a_2)$$

$$\therefore \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

$$\hat{a} \times b + \hat{a} \times \hat{c}$$
  
=  $\hat{i}(a_2b_3 + a_2c_3 - b_2a_3 - c_2a_3) - \hat{j}(a_1b_3 + a_1c_3 - b_1a_3 - c_1a_3)$   
+  $\hat{k}(a_1b_2 + a_1c_2 - b_1a_2 - c_1a_2)$ 

Observe that that RHS of both  $\vec{a} \times (\vec{b} + \vec{c})$  and  $\vec{a} \times \vec{b} + \vec{a} \times \vec{c}$  are the same.

Thus,  $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$ 

#### 34 A. Question

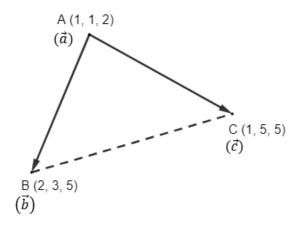
Using vectors, find the area of the triangle with vertices

A(1, 1, 2), B(2, 3, 5) and C(1, 5, 5)

#### Answer

Given three points A(1, 1, 2), B(2, 3, 5) and C(1, 5, 5) forming a triangle.

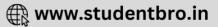
Let position vectors of the vertices A, B and C of  $\triangle$ ABC be $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  respectively.



We know position vector of a point (x, y, z) is given by  $x\hat{i} + y\hat{j} + z\hat{k}$ , where  $\hat{i}$ ,  $\hat{j}$  and  $\hat{k}$  are unit vectors along X, Y and Z directions.

С

⇒ 
$$\vec{a} = (1)\hat{i} + (1)\hat{j} + (2)\hat{k}$$
  
∴  $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$ 



Similarly, we have  $\vec{b}=2\hat{1}+3\hat{j}+5\hat{k}$  and  $\vec{c}=\hat{1}+5\hat{j}+5\hat{k}$ 

To find area of  $\triangle ABC$ , we need to find at least two sides of the triangle. So, we will find vectors  $\overrightarrow{AB}$  and  $\overrightarrow{AC}$ . Recall the vector  $\overrightarrow{AB}$  is given by

$$\overrightarrow{AB}$$
 = position vector of B – position vector of A

$$\Rightarrow \overrightarrow{AB} = \overrightarrow{b} - \overrightarrow{a}$$

$$\Rightarrow \overrightarrow{AB} = (2\overrightarrow{i} + 3\overrightarrow{j} + 5\overrightarrow{k}) - (\overrightarrow{i} + \overrightarrow{j} + 2\overrightarrow{k})$$

$$\Rightarrow \overrightarrow{AB} = (2 - 1)\overrightarrow{i} + (3 - 1)\overrightarrow{j} + (5 - 2)\overrightarrow{k}$$

$$\therefore \overrightarrow{AB} = \overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k}$$
Similarly, the vector  $\overrightarrow{AC}$  is given by
$$\overrightarrow{AC} = \text{position vector of } C - \text{position vector of } A$$

$$\Rightarrow \overrightarrow{AC} = \overrightarrow{c} - \overrightarrow{a}$$

$$\Rightarrow \overrightarrow{AC} = (\overrightarrow{i} + 5\overrightarrow{j} + 5\overrightarrow{k}) - (\overrightarrow{i} + \overrightarrow{j} + 2\overrightarrow{k})$$

$$\Rightarrow \overrightarrow{AC} = (1 - 1)\overrightarrow{i} + (5 - 1)\overrightarrow{j} + (5 - 2)\overrightarrow{k}$$

$$\therefore \overrightarrow{AC} = 4\overrightarrow{j} + 3\overrightarrow{k}$$

Recall the area of the triangle whose adjacent sides are given by the two vectors  $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$  and  $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$  is  $\frac{1}{2}|\vec{a} \times \vec{b}|$  where

 $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$ 

Here, we have  $(a_1, a_2, a_3) = (1, 2, 3)$  and  $(b_1, b_2, b_3) = (0, 4, 3)$ 

$$\Rightarrow \overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ 0 & 4 & 3 \end{vmatrix}$$
  
$$\Rightarrow \overrightarrow{AB} \times \overrightarrow{AC} = \hat{1}[(2)(3) - (4)(3)] - \hat{j}[(1)(3) - (0)(3)] + \hat{k}[(1)(4) - (0)(2)]$$
  
$$\Rightarrow \overrightarrow{AB} \times \overrightarrow{AC} = \hat{1}[6 - 12] - \hat{j}[3 - 0] + \hat{k}[4 - 0]$$
  
$$\therefore \overrightarrow{AB} \times \overrightarrow{AC} = -6\hat{1} - 3\hat{j} + 4\hat{k}$$

Recall the magnitude of the vector  $x\hat{i} + y\hat{j} + z\hat{k}$  is

$$\left|\mathbf{x}\hat{\mathbf{i}} + \mathbf{y}\hat{\mathbf{j}} + \mathbf{z}\hat{\mathbf{k}}\right| = \sqrt{\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2}$$

Now, we find  $\overrightarrow{AB} \times \overrightarrow{AC}$ .

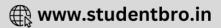
$$|\overrightarrow{AB} \times \overrightarrow{AC}| = \sqrt{(-6)^2 + (-3)^2 + 4^2}$$
  

$$\Rightarrow |\overrightarrow{AB} \times \overrightarrow{AC}| = \sqrt{36 + 9 + 16}$$
  

$$\Rightarrow |\overrightarrow{AB} \times \overrightarrow{AC}| = \sqrt{61}$$
  

$$\therefore \frac{|\overrightarrow{AB} \times \overrightarrow{AC}|}{2} = \frac{\sqrt{61}}{2}$$

Thus, area of the triangle is  $\frac{\sqrt{61}}{2}$  square units.



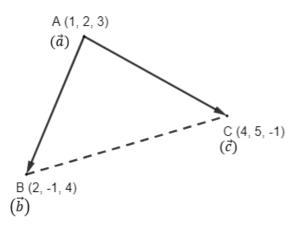
Using vectors, find the area of the triangle with vertices

A(1, 2, 3), B(2, -1, 4) and C(4, 5, -1)

#### Answer

Given three points A(1, 2, 3), B(2, -1, 4) and C(4, 5, -1) forming a triangle.

Let position vectors of the vertices A, B and C of  $\triangle$ ABC be $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  respectively.



We know position vector of a point (x, y, z) is given by  $x\hat{i} + y\hat{j} + z\hat{k}$ , where  $\hat{i}$ ,  $\hat{j}$  and  $\hat{k}$  are unit vectors along X, Y and Z directions.

 $\Rightarrow \vec{a} = (1)\hat{i} + (2)\hat{j} + (3)\hat{k}$ 

 $\therefore \vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ 

Similarly, we have  $\vec{b} = 2\hat{i} - \hat{j} + 4\hat{k}$  and  $\vec{c} = 4\hat{i} + 5\hat{j} - \hat{k}$ 

To find area of  $\triangle ABC$ , we need to find at least two sides of the triangle. So, we will find vectors  $\overrightarrow{AB}$  and  $\overrightarrow{AC}$ .

**CLICK HERE** 

🕀 www.studentbro.in

Recall the vector  $\overrightarrow{AB}$  is given by

 $\overrightarrow{AB} = \text{position vector of } B - \text{position vector of } A$   $\Rightarrow \overrightarrow{AB} = \overrightarrow{b} - \overrightarrow{a}$   $\Rightarrow \overrightarrow{AB} = (2\widehat{i} - \widehat{j} + 4\widehat{k}) - (\widehat{i} + 2\widehat{j} + 3\widehat{k})$   $\Rightarrow \overrightarrow{AB} = (2 - 1)\widehat{i} + (-1 - 2)\widehat{j} + (4 - 3)\widehat{k}$   $\therefore \overrightarrow{AB} = \widehat{i} - 3\widehat{j} + \widehat{k}$ Similarly, the vector  $\overrightarrow{AC}$  is given by  $\overrightarrow{AC} = \text{position vector of } C - \text{position vector of } A$   $\Rightarrow \overrightarrow{AC} = \overrightarrow{c} - \overrightarrow{a}$   $\Rightarrow \overrightarrow{AC} = (4\widehat{i} + 5\widehat{j} - \widehat{k}) - (\widehat{i} + 2\widehat{j} + 3\widehat{k})$   $\Rightarrow \overrightarrow{AC} = (4\widehat{i} + 5\widehat{j} - \widehat{k}) - (\widehat{i} + 2\widehat{j} + 3\widehat{k})$   $\Rightarrow \overrightarrow{AC} = 3\widehat{j} + 3\widehat{j} - 4\widehat{k}$ Recall the area of the triangle whose adjacent sides are given by the two vectors  $\overrightarrow{a} = a_1\widehat{i} + a_2\widehat{j} + a_3\widehat{k}$  and  $\overrightarrow{b} = b_1\widehat{i} + b_2\widehat{j} + b_3\widehat{k}$  is  $\frac{1}{2} |\overrightarrow{a} \times \overrightarrow{b}|$  where

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Here, we have  $(a_1, a_2, a_3) = (1, -3, 1)$  and  $(b_1, b_2, b_3) = (3, 3, -4)$ 

$$\Rightarrow \overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 1 & -3 & 1 \\ 3 & 3 & -4 \end{vmatrix}$$
$$\Rightarrow \overrightarrow{AB} \times \overrightarrow{AC} = \hat{1}[(-3)(-4) - (3)(1)] - \hat{1}[(1)(-4) - (3)(1)] + \hat{k}[(1)(3) - (3)(-3)]$$
$$\Rightarrow \overrightarrow{AB} \times \overrightarrow{AC} = \hat{1}[12 - 3] - \hat{1}[-4 - 3] + \hat{k}[3 + 9]$$
$$\therefore \overrightarrow{AB} \times \overrightarrow{AC} = 9\hat{1} + 7\hat{j} + 12\hat{k}$$
Recall the magnitude of the vector  $x\hat{1} + y\hat{j} + z\hat{k}$  is  $|x\hat{1} + y\hat{j} + z\hat{k}| = \sqrt{x^2 + y^2 + z^2}$ Now, we find  $|\overrightarrow{AB} \times \overrightarrow{AC}|$ .

$$\begin{aligned} \left| \overrightarrow{AB} \times \overrightarrow{AC} \right| &= \sqrt{9^2 + 7^2 + 12^2} \\ \Rightarrow \left| \overrightarrow{AB} \times \overrightarrow{AC} \right| &= \sqrt{81 + 49 + 144} \\ \Rightarrow \left| \overrightarrow{AB} \times \overrightarrow{AC} \right| &= \sqrt{274} \\ \therefore \frac{\left| \overrightarrow{AB} \times \overrightarrow{AC} \right|}{2} &= \frac{\sqrt{274}}{2} \end{aligned}$$

Thus, area of the triangle is  $\frac{\sqrt{274}}{2}$  square units.

#### 35. Question

Find all vectors of magnitude  $10\sqrt{3}$  that are perpendicular to the plane of  $\hat{i} + 2\hat{j} + \hat{k}$  and  $-\hat{i} + 3\hat{j} + 4\hat{k}$ .

#### Answer

Given two vectors  $\vec{a}=\hat{1}+2\hat{j}+\hat{k}$  and  $\vec{b}=-\hat{1}+3\hat{j}+4\hat{k}$ 

We need to find vectors of magnitude  $10\sqrt{3}$  perpendicular to  $\vec{a}$  and  $\vec{b}$ .

Recall a vector that is perpendicular to two vectors  $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$  and  $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$  is

**CLICK HERE** 

≫

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Here, we have  $(a_1, a_2, a_3) = (1, 2, 1)$  and  $(b_1, b_2, b_3) = (-1, 3, 4)$ 

$$\Rightarrow \vec{a} \times \vec{b} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 1 & 2 & 1 \\ -1 & 3 & 4 \end{vmatrix}$$
  
$$\Rightarrow \vec{a} \times \vec{b} = \hat{1}[(2)(4) - (3)(1)] - \hat{j}[(1)(4) - (-1)(1)] + \hat{k}[(1)(3) - (-1)(2)]$$
  
$$\Rightarrow \vec{a} \times \vec{b} = \hat{1}[8 - 3] - \hat{j}[4 + 1] + \hat{k}[3 + 2]$$
  
$$\therefore \vec{a} \times \vec{b} = 5\hat{1} - 5\hat{j} + 5\hat{k}$$

Let the unit vector in the direction of  $\vec{a} \times \vec{b}$  be  $\hat{p}$ .

Get More Learning Materials Here :

# Regional www.studentbro.in

We know unit vector in the direction of a vector  $\vec{a}$  is given by  $\hat{a} = \frac{\vec{a}}{|\vec{a}|}$ .

$$\Rightarrow \hat{p} = \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$$

Recall the magnitude of the vector  $x\hat{i} + y\hat{j} + z\hat{k}$  is

 $\begin{aligned} \left| x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}} \right| &= \sqrt{x^2 + y^2 + z^2} \\ \text{Now, we find } \left| \vec{\mathbf{a}} \times \vec{\mathbf{b}} \right|. \\ \left| \vec{\mathbf{a}} \times \vec{\mathbf{b}} \right| &= \sqrt{5^2 + (-5)^2 + 5^2} \\ \Rightarrow \left| \vec{\mathbf{a}} \times \vec{\mathbf{b}} \right| &= \sqrt{25 + 25 + 25} \\ \therefore \left| \vec{\mathbf{a}} \times \vec{\mathbf{b}} \right| &= \sqrt{75} = 5\sqrt{3} \\ \text{So, we have } \hat{\mathbf{p}} &= \frac{\vec{\mathbf{a}} \times \vec{\mathbf{b}}}{5\sqrt{3}} \\ \Rightarrow \hat{\mathbf{p}} &= \frac{1}{5\sqrt{3}} \left( 5\hat{\mathbf{i}} - 5\hat{\mathbf{j}} + 5\hat{\mathbf{k}} \right) \\ \therefore \hat{\mathbf{p}} &= \frac{1}{\sqrt{3}} \left( \hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}} \right) \end{aligned}$ 

So, a vector of magnitude  $10\sqrt{3}$  in the direction of  $\vec{a}\times\vec{b}$  is

$$10\sqrt{3}\hat{p} = 10\sqrt{3} \times \frac{1}{\sqrt{3}}(\hat{i} - \hat{j} + \hat{k})$$
$$\Rightarrow 10\sqrt{3}\hat{p} = 10(\hat{i} - \hat{j} + \hat{k})$$
$$\therefore 10\sqrt{3}\hat{p} = 10\hat{i} - 10\hat{j} + 10\hat{k}$$

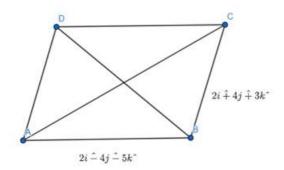
Observe that  $-10\sqrt{3}\hat{p}$  is also a unit vector perpendicular to the same plane. This vector is along the direction opposite to the direction of vector  $10\sqrt{3}\hat{p}$ .

Thus, the vectors of magnitude  $10\sqrt{3}$  that are perpendicular to plane of both  $\vec{a}$  and  $\vec{b}$  are  $\pm (10\hat{i} - 10\hat{j} + 10\hat{k})$ .

## 36. Question

The two adjacent sides of a parallelogram are  $2\hat{i} - 4\hat{j} - 5\hat{k}$  and  $2\hat{i} + 2\hat{j} + 3\hat{k}$ . Find the two unit vectors parallel to its diagonals. Using the diagonal vectors, find the area of the parallelogram.

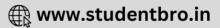
## Answer



We need to find a unit vector parallel to AC.

Now from the Parallel law of vector Addition, we know that,





 $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ 

Therefore,

 $\overrightarrow{AC} = 2\,\hat{i} - 4\,\hat{j} - 5\,\hat{k} + (2\,\hat{i} + 3\,\hat{j} + 3\,\hat{k})$  $\overrightarrow{AC} = 4\,\hat{i} - \hat{j} - 2\,\hat{k}$ 

Now we need to find the unit vector parallel to  $\overrightarrow{\text{AC}}$ 

Any unit vector is given by,

$$\widehat{n} = \frac{n}{|\overrightarrow{n}|}$$
Therefore,  $\widehat{AC} = \frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$ 

$$|\overrightarrow{AC}| = \sqrt{(4)^2 + (1)^2 + (2)^2}$$

$$|\overrightarrow{AC}| = \sqrt{21}$$

$$\widehat{AC} = \frac{4\widehat{1} - \widehat{1} - 2\widehat{k}}{\sqrt{21}}$$

Now, we need to find Area of parallelogram. From the figure above it can be easily found by the cross product of adjacent sides.

Therefore, Area of Parallelogram =  $|\overrightarrow{AB} \times \overrightarrow{BC}|$ 

If 
$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$$
 and  $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$   
 $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_2 \end{vmatrix}$ 

 $\begin{array}{c} a \times b = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix}$ Here, we have,

 $(a_1, a_2, a_3) = (2, -4, -5)$  and  $(b_1, b_2, b_3) = (2, 3, 3)$ 

$$\Rightarrow \overrightarrow{(AB)} \times \overrightarrow{(BC)} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 2 & -4 & -5 \\ 2 & 3 & 2 \end{vmatrix}$$

 $\overrightarrow{AB} \times \overrightarrow{BC} = \hat{i} (-8+15) - \hat{j} (4+10) + \hat{k} (6+8)$ 

 $\overrightarrow{\text{AB}} \times \overrightarrow{\text{BC}} = 7\,\hat{1} - 14\,\hat{j} + 14\,\hat{k}$ 

 $\left|\overrightarrow{AB} \times \overrightarrow{BC}\right| = \sqrt{(7)^2 + (14)^2 + (14)^2}$ 

$$|\overrightarrow{AB} \times \overrightarrow{BC}| = 21$$

Area of Parallelogram = 21 sq units.

# 37. Question

$$\text{If } \left| \vec{a} \times \vec{b} \right|^2 + \left| \vec{a} . \vec{b} \right|^2 = 400 \text{ and } \left| \vec{a} \right| = 5, \text{ then write the value of } \left| \vec{b} \right|.$$

# Answer

Given  $|\vec{a} \times \vec{b}|^2 + |\vec{a} \cdot \vec{b}|^2 = 400$  and  $|\vec{a}| = 5$ 

We know the dot product of two vectors  $\vec{a}$  and  $\vec{b}$  forming an angle  $\theta$  is

Get More Learning Materials Here : 💶

CLICK HERE



 $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$  $\Rightarrow |\vec{a}.\vec{b}| = |\vec{a}||\vec{b}||\cos\theta|$  $\therefore |\vec{a}.\vec{b}| = 5|\vec{b}||\cos\theta|$ We also know the cross product of two vectors  $\vec{a}$  and  $\vec{b}$  forming an angle  $\theta$  is  $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$ where  $\hat{\mathbf{n}}$  is a unit vector perpendicular to  $\mathbf{\vec{a}}$  and  $\mathbf{\vec{b}}$  $\Rightarrow |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| |\sin \theta| |\hat{n}|$  $\hat{\mathbf{n}}$  is a unit vector  $\Rightarrow |\hat{\mathbf{n}}| = 1$  $\therefore |\vec{a} \times \vec{b}| = 5|\vec{b}||\sin\theta|$ We have  $|\vec{a} \times \vec{b}|^2 + |\vec{a} \cdot \vec{b}|^2 = 400$  $\Rightarrow (5|\vec{b}||\sin\theta|)^2 + (5|\vec{b}||\cos\theta|)^2 = 400$  $\Rightarrow 25 |\vec{b}|^2 |\sin \theta|^2 + 25 |\vec{b}|^2 |\cos \theta|^2 = 400$  $\Rightarrow 25 \left| \vec{b} \right|^2 (|\sin \theta|^2 + |\cos \theta|^2) = 400$  $\Rightarrow 25 |\vec{b}|^2 (\sin^2\theta + \cos^2\theta) = 400$ But, we know  $\sin^2\theta + \cos^2\theta = 1$  $\Rightarrow 25 |\vec{b}|^2 = 400$  $\Rightarrow \left|\vec{b}\right|^2 = 16$  $|\vec{b}| = \sqrt{16} = 4$ Thus,  $|\vec{b}| = 4$ 

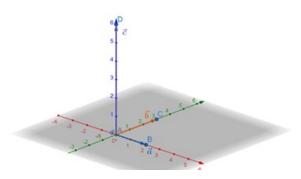
# Very short answer

# 1. Question

Define vector product of two vectors.

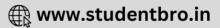
# Answer

Definition: VECTOR PRODUCT: When multiplication of two vectors yields another vector then it is called vector product of two vectors.



Example: Figure 1: Vector Product





 $\vec{c} = \vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin\theta \hat{n}$ 

[where  $\hat{n}$  is a unit vector perpendicular to the plane containing  $\vec{a}$  and  $\vec{b}$  (referred to the figure provided)]

# 2. Question

Write the value  $(\hat{i} \times \hat{j}) \cdot \hat{k} + \hat{i} \cdot \hat{j}$ .

## Answer

 $(\mathbf{\hat{i}} \times \mathbf{\hat{j}}) \cdot \mathbf{\hat{k}} + \mathbf{\hat{i}} \cdot \mathbf{\hat{j}} = 1$ 

We know,  $\hat{i}$ ,  $\hat{j}$  and  $\hat{k}$  are 3 unit vectors along x, y and z axis whose magnitudes are unity.

 $\hat{\mathbf{i}} \times \hat{\mathbf{j}} = |\hat{\mathbf{i}}||\hat{\mathbf{j}}|\sin 90^{\circ}\hat{\mathbf{n}}$ 

[where  $\hat{\mathbf{n}}$  is a unit vector perpendicular to the plane containing  $\hat{\mathbf{i}}$  and  $\hat{\mathbf{j}}$ ]

 $= 1 \times 1 \times 1 \times \hat{k}$ 

 $= \hat{k}$  [here  $\hat{n}$  is  $\hat{k}$ , as  $\hat{k}$  is perpendicular to both  $\hat{i}$  and  $\hat{j}$ ]

And,  $\hat{1} \cdot \hat{j} = |\hat{1}||\hat{j}|\cos 90^{\circ} = 0$ .

So,  $(\hat{i} \times \hat{j}) \cdot \hat{k} + \hat{i} \cdot \hat{j}$ 

$$=\hat{\mathbf{k}}\cdot\hat{\mathbf{k}}+\mathbf{0}$$

 $= |\hat{\mathbf{k}}| |\hat{\mathbf{k}}| \cos^{0}$ 

= 1 [ $\because$   $\hat{k}$  is an unit vector].

# 3. Question

```
Write the value of \hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{k} \times \hat{i}) + \hat{k} \cdot (\hat{j} \times \hat{i}).
```

## Answer

 $\hat{\mathbf{i}} \cdot (\hat{\mathbf{j}} \times \hat{\mathbf{k}}) + \hat{\mathbf{j}} \cdot (\hat{\mathbf{k}} \times \hat{\mathbf{i}}) + \hat{\mathbf{k}} \cdot (\hat{\mathbf{j}} \times \hat{\mathbf{i}}) = 1.$ 

We know,  $\hat{\mathbf{i}}$ ,  $\hat{\mathbf{j}}$  and  $\hat{\mathbf{k}}$  are 3 unit vectors along x, y and z axis whose magnitudes are unity.

We have,

 $\hat{j} \times \hat{k} = |\hat{j}| |\hat{k}| \sin 90^{\circ} \hat{i} = \hat{i},$ 

 $\hat{\mathbf{k}} \times \hat{\mathbf{i}} = |\hat{\mathbf{k}}||\hat{\mathbf{i}}|\sin 90^{\circ}\hat{\mathbf{j}}$  and

```
\hat{j} \times \hat{i} = |\hat{j}||\hat{i}|\sin 90^{\circ}(-\hat{k}) = -\hat{k}
```

```
And, \hat{1} \cdot \hat{1} = |\hat{1}| |\hat{1}| \cos 0^\circ = 1,
```

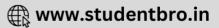
```
\hat{j} \cdot \hat{j} = |\hat{j}||\hat{j}|\cos 90^\circ = 1 and
```

```
\hat{k}.(-\hat{k}) = |\hat{k}||\hat{k}|\cos 180^{\circ} = -1.
```

```
\therefore \hat{1} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{k} \times \hat{1}) + \hat{k} \cdot (\hat{j} \times \hat{1})
```

$$= \hat{i} \cdot \hat{i} + \hat{j} \cdot \hat{j} + \hat{k} \cdot (-\hat{k})$$

=1.



Write the value of  $\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{k} \times \hat{i}) + \hat{k} \cdot (\hat{i} \times \hat{j})$ .

# Answer

 $\hat{\imath} \cdot \left(\hat{\jmath} \times \hat{k}\right) + \hat{\jmath} \cdot \left(\hat{k} \times \hat{\imath}\right) + \hat{k} \cdot \left(\hat{\imath} \times \hat{\jmath}\right) = 3.$ 

We know,  $\hat{\mathbf{i}}$ ,  $\hat{\mathbf{j}}$  and  $\hat{\mathbf{k}}$  are 3 unit vectors along x, y and z axis whose magnitudes are unity.

We have,

- $: \hat{j} \times \hat{k} = |\hat{j}| |\hat{k}| \sin 90^{\circ} \hat{i} = \hat{i},$
- $\hat{\mathbf{k}} \times \hat{\mathbf{i}} = |\hat{\mathbf{k}}| |\hat{\mathbf{i}}| \sin 90^{\circ} \hat{\mathbf{j}}$  and
- $\hat{\mathbf{i}} \times \hat{\mathbf{j}} = |\hat{\mathbf{i}}||\hat{\mathbf{j}}| \sin 90^{\circ} \hat{\mathbf{k}} = \hat{\mathbf{k}}$

And,  $\hat{\mathbf{i}}, \hat{\mathbf{i}} = |\hat{\mathbf{i}}||\hat{\mathbf{i}}|\cos 0^{\circ} = 1$ ,

 $\hat{j}\cdot\hat{j}=|\hat{i}||\hat{j}|cos0^{o}=1$  and

 $\hat{\mathbf{k}} \cdot \hat{\mathbf{k}} = |\hat{\mathbf{k}}| |\hat{\mathbf{k}}| \cos 0^\circ = 1.$ 

```
\therefore \hat{\mathbf{i}} \cdot (\hat{\mathbf{j}} \times \hat{\mathbf{k}}) + \hat{\mathbf{j}} \cdot (\hat{\mathbf{k}} \times \hat{\mathbf{i}}) + \hat{\mathbf{k}} \cdot (\hat{\mathbf{i}} \times \hat{\mathbf{j}})
```

```
= \hat{\imath} \cdot \hat{\imath} + \hat{\jmath} \cdot \hat{\jmath} + \hat{k} \cdot \hat{k}= 1 + 1 + 1
```

```
=3
```

# 5. Question

Write the value of  $\hat{i} \times (\hat{j} + \hat{k}) + \hat{j} \times (\hat{k} + \hat{i}) + \hat{k} \times (\hat{i} + \hat{j})$ .

#### Answer

We know,  $\hat{\mathbf{i}}$ ,  $\hat{\mathbf{j}}$  and  $\hat{\mathbf{k}}$  are 3 unit vectors along x, y and z axis whose magnitudes are unity.

```
We have, \hat{i} \times (\hat{j} + \hat{k}) = |\hat{i}||\hat{j}|\sin 90^{\circ}\hat{k} + |\hat{i}||\hat{k}|\sin 90^{\circ}(-\hat{j}) = \hat{k} - \hat{j},

\hat{j} \times (\hat{k} + \hat{i}) = |\hat{j}||\hat{k}|\sin 90^{\circ}\hat{i} + |\hat{j}||\hat{i}|\sin 90^{\circ}(-\hat{k}) = \hat{i} - \hat{k} and

\hat{k} \times (\hat{i} + \hat{j}) = |\hat{k}||\hat{i}|\sin 90^{\circ}\hat{j} + |\hat{k}||\hat{j}|\sin 90^{\circ}(-\hat{i}) + = \hat{j} - \hat{i}.

\therefore \hat{i} \times (\hat{j} + \hat{k}) + \hat{j} \times (\hat{k} + \hat{i}) + \hat{k} \times (\hat{i} + \hat{j})

= \hat{k} - \hat{j} + \hat{i} - \hat{k} + \hat{j} - \hat{i}

=0
```

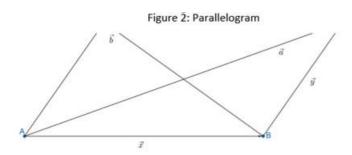
## 6. Question

Write the expression for the area of the parallelogram having  $\vec{a}$  and  $\vec{b}$  as its diagonals.

## Answer

Area of parallelogram  $=\frac{1}{2}\left|\vec{a}\times\vec{b}\right|$ 





From the figure, it is clear that,  $\vec{x}+\vec{y}=\vec{a}$  and

$$\vec{y} + (-\vec{x}) = \vec{b} \text{ i.e. } \vec{y} - \vec{x} = \vec{b}.$$
Now,  $\vec{a} \times \vec{b} = (\vec{x} + \vec{y}) \times (\vec{y} - \vec{x})$ 

$$= \vec{x} \times (\vec{y} - \vec{x}) + \vec{y} \times (\vec{y} - \vec{x})$$

$$= \{(\vec{x} \times \vec{y}) - (\vec{x} \times \vec{x})\} + \{(\vec{y} \times \vec{y}) - (\vec{y} \times \vec{x})\}$$

$$= 2(\vec{x} \times \vec{y}).$$
[:  $(\vec{x} \times \vec{x}) = 0, (\vec{y} \times \vec{y}) = 0 \text{ and } (\vec{y} \times \vec{x}) = -(\vec{x} \times \vec{y})$ ]
Now, we know, area of parallelogram =  $|\vec{x} \times \vec{y}|.$ 

So, Area of parallelogram =  $\frac{1}{2} |\vec{a} \times \vec{b}| \cdot [:: \vec{a} \times \vec{b} = 2(\vec{x} \times \vec{y})]$ 

## 7. Question

For any two vectors  $\vec{a}$  and  $\vec{b}$  write the value of  $(\vec{a} \cdot \vec{b})^2 + |\vec{a} \times \vec{b}|^2$  in terms of their magnitudes.

# Answer

$$\begin{aligned} \left(\vec{a} \cdot \vec{b}\right)^2 + \left|\vec{a} \times \vec{b}\right|^2 &= \left(|\vec{a}| \left|\vec{b}\right|\right)^2. \end{aligned}$$
We know,  $\vec{a} \cdot \vec{b} &= |\vec{a}| \left|\vec{b}\right| \cos \theta$   
and  $\vec{a} \times \vec{b} &= |\vec{a}| \left|\vec{b}\right| \sin \theta.$   
So,  $\left(\vec{a} \cdot \vec{b}\right)^2 + \left|\vec{a} \times \vec{b}\right|^2$   
 $&= \left(|\vec{a}| \left|\vec{b}\right|\right)^2 (\cos^2 \theta + \sin^2 \theta)$   
 $&= \left(|\vec{a}| \left|\vec{b}\right|\right)^2 \cdot \left[\because (\cos^2 \theta + \sin^2 \theta) = 1\right]$   
8. Question  
If  $\vec{a}$  and  $\vec{b}$  are two vectors of magnitudes 3 and  $\frac{\sqrt{2}}{3}$  respectively such that  $\vec{a} \times \vec{b}$  is a unit vector. Write the angle between  $\vec{a}$  and  $\vec{b}$ .  
Answer  
Angle between  $\vec{a}$  and  $\vec{b} = 45^\circ$ .

Given, 
$$|\vec{a}| = 3$$
,  $|\vec{b}| = \frac{\sqrt{2}}{3}$ 

Get More Learning Materials Here :

# Regional www.studentbro.in

Also given,  $\vec{a} \times \vec{b}$  is a unit vector

i.e. 
$$\vec{a} \times \vec{b} = 1$$
.  
 $\therefore \vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta$   
 $= 3 \times \frac{\sqrt{2}}{3} \times \sin \theta$   
 $= \sqrt{2} \times \sin \theta = 1$   
 $\Rightarrow \sqrt{2} \times \sin \theta = 1$   
 $\Rightarrow \sin \theta = \frac{1}{\sqrt{2}}$   
 $\Rightarrow \theta = \sin^{-1} \left(\frac{1}{\sqrt{2}}\right) = 45^{\circ}$ 

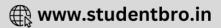
 $\therefore$  Angle between  $\vec{a}$  and  $\vec{b}=45^\circ$ 

## 9. Question

If  $|\vec{a}| = 10$ ,  $|\vec{b}| = 2$  and  $|\vec{a} \times \vec{b}| = 16$ , and  $\vec{a} \cdot \vec{b}$ .

## Answer

 $\vec{a} \cdot \vec{b} = 12 \cdot$ Given,  $|\vec{a}| = 10$ ,  $|\vec{b}| = 2$  and  $\vec{a} \times \vec{b} = 16$  $\therefore \vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta = 10 \times 2 \times \sin \theta = 20 \times \sin \theta = 16$  $\Rightarrow 20 \times \sin \theta = 16$  $\Rightarrow$  sin  $\theta = \frac{16}{20} = \frac{4}{5}$  $\therefore\cos\theta = \sqrt{1 - \left(\frac{4}{5}\right)^2}$  $=\sqrt{1-\frac{16}{25}}$  $=\sqrt{\frac{25-16}{25}}$  $=\sqrt{\frac{9}{25}}$  $=\frac{3}{5}$  $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$  $=10 \times 2 \times \frac{3}{5}$ =12



For any two vectors  $\vec{a}$  and  $\vec{b}$ , find  $\vec{a} \cdot (\vec{b} \times \vec{a})$ .

## Answer

 $\vec{a} \cdot (\vec{b} \times \vec{a}) = 0$ .

We know,

 $(\vec{b} \times \vec{a})$  is perpendicular to both  $\vec{a}$  and  $\vec{b}$ .

So,  $\vec{a} \cdot (\vec{b} \times \vec{a}) = 0$  [ $\because \vec{a}$  and  $(\vec{b} \times \vec{a})$  are perpendicular to each other]

## 11. Question

If  $\vec{a}$  and  $\vec{b}$  are two vectors such that  $|\vec{b} \times \vec{a}| = \sqrt{3}$  and  $\vec{a} \cdot \vec{b} = 1$ , find the angle between.

## Answer

The angle between  $\vec{a}$  and  $\vec{b}$  is 60°.

We have,  $|\vec{b} \times \vec{a}| = \sqrt{3}$  and  $\vec{a} \cdot \vec{b} = 1$ .

and  $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta = 1$  .....(2)

Dividing equation (1) by equation (2),

 $\frac{\left|\vec{\mathbf{b}}\right|\left|\vec{\mathbf{a}}\right|\sin\theta}{\left|\vec{\mathbf{a}}\right|\left|\vec{\mathbf{b}}\right|\cos\theta} = \frac{\sqrt{3}}{1} = \sqrt{3}$ 

 $\Rightarrow$  tan  $\theta = \sqrt{3}$ 

$$\Rightarrow \theta = \tan^{-1}\sqrt{3} = 60^{\circ}$$

 $\therefore$  The angle between  $\vec{a}$  and  $\vec{b}$  is 60°.

## 12. Question

For any three vectors  $\vec{a}, \vec{b}$  and  $\vec{c}$  write the value of  $\vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times (\vec{c} + \vec{a}) + \vec{c} \times (\vec{a} + \vec{b})$ .

## Answer

$$\vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times (\vec{c} + \vec{a}) + \vec{c} \times (\vec{a} + \vec{b}) = 0.$$
  
$$\vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times (\vec{c} + \vec{a}) + \vec{c} \times (\vec{a} + \vec{b})$$
  
$$= (\vec{a} \times \vec{b}) + (\vec{a} \times \vec{c}) + (\vec{b} \times \vec{c}) + (\vec{b} \times \vec{a}) + (\vec{c} \times \vec{a}) + (\vec{c} \times \vec{b})$$
  
$$= (\vec{a} \times \vec{b}) - (\vec{c} \times \vec{a}) + (\vec{b} \times \vec{c}) - (\vec{a} \times \vec{b}) + (\vec{c} \times \vec{a}) - (\vec{b} \times \vec{c})$$
  
$$= 0$$

# 13. Question

For any two vectors  $\vec{a}$  and  $\vec{b}$ , find  $(\vec{a} \times \vec{b}) \cdot \vec{b}$ .

## Answer

 $(\vec{a} \times \vec{b}) \cdot \vec{b} = 0$ 

# Get More Learning Materials Here : 📕



# Regional www.studentbro.in

We know,  $(\vec{a} \times \vec{b})$  is perpendicular to both  $\vec{a}$  and  $\vec{b}$ .

So,  $(\vec{a} \times \vec{b}) \cdot \vec{b} = 0$  [ $\because \vec{b}$  and  $(\vec{a} \times \vec{b})$  are perpendicular to each other]

### 14. Question

Write the value of  $\hat{i} \times (\hat{j} \times \hat{k})$ .

## Answer

 $\hat{\mathbf{i}} \times (\hat{\mathbf{j}} \times \hat{\mathbf{k}}) = \mathbf{0}.$ 

We know,  $\hat{\mathbf{i}}$ ,  $\hat{\mathbf{j}}$  and  $\hat{\mathbf{k}}$  are 3 unit vectors along x, y and z axis whose magnitudes are unity.

 $\hat{i} \times (\hat{j} \times \hat{k}) = \hat{i} \times \hat{i} = |\hat{i}| |\hat{i}| \sin 0^{\circ} = 0.$ 

#### 15. Question

If  $\vec{a} = 3\hat{i} - \hat{j} + 2\hat{k}$  and  $\vec{b} = 2\hat{i} + \hat{j} - \hat{k}$ , then find  $(\vec{a} \times \vec{b})\vec{a}$ .

#### Answer

NOTE: The product of  $(\vec{a} \times \vec{b})$  and  $\vec{a}$  is not mentioned here.

 $(\vec{a} \times \vec{b}) \cdot \vec{a} = 0$  and  $(\vec{a} \times \vec{b}) \times \vec{a} = 19\hat{i} + 17\hat{j} - 20\hat{k}$ .

We know,  $\hat{\mathbf{i}}$ ,  $\hat{\mathbf{j}}$  and  $\hat{\mathbf{k}}$  are 3 unit vectors along x, y and z axis whose magnitudes are unity.

Given, 
$$\vec{a} = 3\hat{i} - \hat{j} + 2\hat{k}$$
 and  $\vec{b} = 2\hat{i} + \hat{j} - \hat{k}$ .  

$$\therefore (\vec{a} \times \vec{b}) \cdot \vec{a} = [(3\hat{i} - \hat{j} + 2\hat{k}) \times (2\hat{i} + \hat{j} - \hat{k})] \cdot (3\hat{i} - \hat{j} + 2\hat{k})$$

$$= (-\hat{i} + 7\hat{j} + 5\hat{k}) \cdot (3\hat{i} - \hat{j} + 2\hat{k})$$

$$= -3 - 7 + 10$$

$$= 0.$$

**"FOR CROSS PRODUCT"** 

$$\therefore (\vec{a} \times \vec{b}) \times \vec{a} = [(3\hat{i} - \hat{j} + 2\hat{k}) \times (2\hat{i} + \hat{j} - \hat{k})] \times (3\hat{i} - \hat{j} + 2\hat{k})$$
$$= (-\hat{i} + 7\hat{j} + 5\hat{k}) \times (3\hat{i} - \hat{j} + 2\hat{k})$$
$$= 19\hat{i} + 17\hat{j} - 20\hat{k} .$$

#### 16. Question

Write a unit vector perpendicular to  $\hat{i} + \hat{j}$  and  $\hat{j} + \hat{k}$ .

#### Answer

We know that cross product of two vectors gives us a vector which is perpendicular to both the vectors.

Let  $\vec{M} = \hat{\iota} + \hat{j}$  and  $\vec{N} = \hat{j} + \hat{k}$  and  $\vec{O}$  be the vector perpendicular to vectors  $\vec{M}$  and  $\vec{N}$ .

$$\therefore \vec{O} = \vec{M} \times \vec{N} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ M_1 & M_2 & M_3 \\ N_1 & N_2 & N_3 \end{vmatrix}$$

$$= (M_2N_3 - M_3N_2)\hat{\iota} - (M_1N_3 - M_3N_1)\hat{j} + (M_1N_2 - M_2N_1)\hat{k}$$

Inserting the given values we get,

# Get More Learning Materials Here : 📕



# 🕀 www.studentbro.in

 $\vec{O} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix}$  $= (1 \times 1 - 0 \times 1)\hat{i} - (1 \times 1 - 0 \times 0)\hat{j} + (1 \times 1 - 1 \times 0)\hat{k}$  $= (1 - 0)\hat{i} + (1 - 0)\hat{j} + (1 - 0)\hat{k}$  $= \hat{i} - \hat{j} + \hat{k}$ 

Now, as we know unit vector can be obtained by dividing the given vector by its magnitude.

$$\vec{O} = \hat{\iota} - \hat{J} + \hat{k} \text{ and } |\vec{C}| = \sqrt{1^2 + (-1)^2 + 1^2} = \sqrt{3}$$

Unit vector in the direction of  $\vec{o} = \frac{\vec{c}}{|\vec{c}|}$ 

 $\therefore$ Desired unit vector is  $\frac{1}{\sqrt{3}}(\hat{\iota} - \hat{j} + \hat{k})$ 

## 17. Question

$$|\mathbf{f}| \, \vec{a} \times \vec{b} \,|^2 + \left( \vec{a} \cdot \vec{b} \right)^{-2} = 144 \text{ and } | \, \vec{a} \,| = 4 \text{, find } | \, \vec{b} \,| \,.$$

[Correction in the Question –  $(\vec{a}, \vec{b})^{-2}$ should be  $(\vec{a}, \vec{b})^2$  or else it's not possible to find the value  $|\vec{b}|$ .]

## Answer

We know that,

$$(\vec{a} \times \vec{b}) = |\vec{a}| |\vec{b}| \sin \theta \to (1)$$
  

$$(\vec{a}.\vec{b}) = |\vec{a}| |\vec{b}| \cos \theta \to (2)$$
  
Now,  

$$|\vec{a} \times \vec{b}|^2 + (\vec{a}.\vec{b})^2 = 144$$
  

$$|\vec{a}|^2 |\vec{b}|^2 \sin^2 \theta + |\vec{a}|^2 |\vec{b}|^2 \cos^2 \theta = 144 \to From (1) and (2)$$
  

$$|\vec{a}|^2 |\vec{b}|^2 (\sin^2 \theta + \cos^2 \theta) = 144$$
  

$$|\vec{a}|^2 |\vec{b}|^2 = 144 \to \sin^2 \theta + \cos^2 \theta = 1$$
  

$$4^2 \times |\vec{b}|^2 = 144$$
  

$$16 \times |\vec{b}|^2 = 144$$
  

$$|\vec{b}|^2 = \frac{144}{16} = 9$$
  

$$|\vec{b}| = 3$$

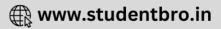
## 18. Question

If  $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ , then write the value of  $|\vec{r} \times \hat{i}|^2$ .

## Answer

So we have  $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$  and  $\hat{i}$ , in order to find  $|\vec{r} \times \hat{i}|^2$  we need to work out the problem by finding cross product through determinant.





$$\dot{\cdot} \cdot \vec{r} \times \hat{\imath} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ r_1 & r_2 & r_3 \\ 1 & 0 & 0 \end{vmatrix}$$

$$= (r_2 \times 0 - r_3 \times 0)\hat{\imath} - (r_1 \times 0 - r_3 \times 1)\hat{\jmath} + (r_1 \times 0 - r_2 \times 1)\hat{k}$$

$$\vec{r} \times \hat{\imath} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ x & y & z \\ 1 & 0 & 0 \end{vmatrix} = (y \times 0 - z \times 0)\hat{\imath} - (x \times 0 - z \times 1)\hat{\jmath} + (x \times 0 - y \times 1)\hat{k}$$

$$= 0\hat{\imath} + z\hat{\jmath} - y\hat{k} = z\hat{\jmath} - y\hat{k} \rightarrow (1)$$
Now then,
$$|\vec{r} \times \hat{\imath}| = \sqrt{z^2 + (-y)^2} = \sqrt{z^2 + y^2} \rightarrow \text{From } (1)$$

$$|\vec{r} \times \hat{\iota}|^2 = z^2 + y^2$$

If  $\vec{a}$  and  $\vec{b}$  are unit vectors such that  $\vec{a}\times\vec{b}$  is also a unit vector, find the angle between  $\vec{a}$  and  $\vec{b}$ .

## Answer

Let's see what all things we know from the given question.

 $|\vec{a}| = 1, |\vec{b}| = 1 \text{ and } |\vec{a} \times \vec{b}| = 1 \rightarrow \text{Unit Vectors}$ Also,  $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin\theta$   $1 = (1)(1) \sin\theta$  $\sin\theta = 1$ 

$$\theta = \frac{\pi}{2}$$

# 20. Question

If  $\vec{a}$  and  $\vec{b}$  are two vectors such that  $|\vec{a} \cdot \vec{b}| = |\vec{a} \times \vec{b}|$ , write the angle between  $\vec{a}$  and  $\vec{b}$ .

## Answer

Equations we already have -

$$\left|\vec{a}.\vec{b}\right| = \left|\vec{a}\right| \left|\vec{b}\right| \left|\cos\theta\right| \to (1)$$

$$|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| |sin\theta| \rightarrow (2)$$

Now,

 $\left|\vec{a} \times \vec{b}\right| = \left|\vec{a}.\vec{b}\right| \rightarrow (Given)$ 

 $|\vec{a}||\vec{b}||\sin\theta| = |\vec{a}||\vec{b}||\cos\theta| \rightarrow (1 \text{ and } 2)$ 

 $\sin \theta = \cos \theta$ 

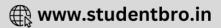
 $\theta = \frac{\pi}{4}$ 

# 21. Question

If  $\vec{a}$  and  $\vec{b}$  are unit vectors, then write the value of  $|\vec{a} \times \vec{b}|^2 + (\vec{a} \times \vec{b})^2$ .

#### Answer





Let's have a look at everything we have before proceeding to solve the question.

 $|\vec{a}| = 1$  and  $|\vec{b}| = 1 \rightarrow$  Given (Unit Vectors)  $(\vec{a} \times \vec{b}) = |\vec{a}| |\vec{b}| \sin \theta$  $(\vec{a}.\vec{b}) = |\vec{a}||\vec{b}|\cos\theta$ Now then,  $|\vec{a} \times \vec{b}|^2 + (\vec{a} \times \vec{b})^2$  $= (|\vec{a}||\vec{b}|sin\theta)^2 + (|\vec{a}||\vec{b}|sin\theta)^2$  $= |\vec{a}|^2 |\vec{b}|^2 sin^2 \theta + |\vec{a}|^2 |\vec{b}|^2 sin^2 \theta$  $= 2|\vec{a}|^2|\vec{b}|^2sin^2\theta$  $= 2(1)(1)\sin^2\theta$  $= 2 \sin^2 \theta$ In case, the question asks for  $|\vec{a} \times \vec{b}|^2 + (\vec{a} \cdot \vec{b})^2$  $= (|\vec{a}||\vec{b}|sin\theta)^2 + (|\vec{a}||\vec{b}|cos\theta)^2$  $= |\vec{a}|^2 |\vec{b}|^2 sin^2 \theta + |\vec{a}|^2 |\vec{b}|^2 cos^2 \theta$  $= |\vec{a}|^2 |\vec{b}|^2 (sin^2\theta + cos^2\theta)$  $= |\vec{a}|^2 |\vec{b}|^2$ =(1)(1)= 1 22. Question If  $\vec{a}$  is a unit vector such that  $\vec{a} \times \hat{i} = \hat{j}$ , find  $\vec{a} \cdot \hat{i}$ .

## Answer

We know that  $\rightarrow$ 

 $\hat{\iota} \times \hat{j} = \hat{k} \to (1)$ 

 $\hat{j} \times \hat{k} = \hat{\iota} \rightarrow (2)$ 

 $\hat{k} \times \hat{\iota} = \hat{\jmath} \to (3)$ 

$$\hat{\imath}.\hat{\jmath} = \hat{\imath}.\hat{k} = \hat{\jmath}.\hat{k} = 0 \rightarrow (4)$$

Now,

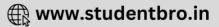
 $\vec{a} \times \hat{\iota} = \hat{k} \times \hat{\iota} \rightarrow \text{Given and (3)}$ 

On comparing LHS and RHS we get :

 $\vec{a} = \hat{k} \rightarrow (5)$ 

 $\vec{a}.\,\hat{\imath} = \hat{k}.\,\hat{\imath} \rightarrow \text{From}(5)$ 

 $\vec{a} \cdot \hat{i} = 0 \rightarrow \text{From (4)}$ 



If  $\vec{c}$  is a unit vector perpendicular to the vectors  $\vec{a}$  and  $\vec{b}$ , write another unit vector perpendicular to  $\vec{a}$  and  $\vec{b}$ .

### Answer

We know that cross product of two vectors gives us a vector which is perpendicular to both the vectors. And keeping in mind that  $\vec{c}$  is a Unit vector we get the equation –

 $\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|} = \vec{c} \rightarrow$  (Vector divided its magnitude gives unit vector)

 $\frac{\vec{b} \times \vec{a}}{|\vec{a} \times \vec{b}|} = -\vec{c} \therefore -\vec{c} \text{ is perpendicular to } \vec{a} \text{ and } \vec{b}$ 

Thus,  $-\vec{c}$  is another unit vector perpendicular to  $\vec{a}$  and  $\vec{b}$ .

Alternative Solution -

Since  $\vec{c}$  is perpendicular to  $\vec{a}$  and  $\vec{b}$ , any unit vector parallel/anti-parallel to  $\vec{c}$  will be perpendicular to  $\vec{a}$  and  $\vec{b}$ .

## 24. Question

Find the angle between two vectors  $\vec{a}$  and  $\vec{b}$ , with magnitudes 1 and 2 respectively and when  $|\vec{a} \times \vec{b}| = \sqrt{3}$ .

## Answer

 $|\vec{a}| = 1, |\vec{b}| = 2, |\vec{a} \times \vec{b}| = \sqrt{3} \rightarrow \text{Given}$  $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| |\sin\theta|$  $\sqrt{3} = 1 \times 2 \times \sin\theta$  $\sin\theta = \frac{\sqrt{3}}{2}$  $\sin\theta = \frac{\pi}{2}$ 

## 25. Question

Vectors  $\vec{a}$  and  $\vec{b}$  are such that  $|\vec{a}| = \sqrt{3}, |\vec{b}| = \frac{2}{3}$  and  $(\vec{a} \times \vec{b})$  is a unit vector. Write the angle between  $\vec{a}$  and  $\vec{b}$ .

#### Answer

Let's have a look at everything given in the problem.

 $|\vec{a}| = \sqrt{3}$ 

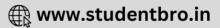
 $|\vec{b}| = \frac{2}{3}$ 

$$\left|\vec{a} \times \vec{b}\right| = 1$$

We can use the basic cross product formula to solve the question -

$$\left|\vec{a} \times \vec{b}\right| = |a||b|sin\theta$$
  
$$1 = \sqrt{3} \times \frac{2}{3} \times sin\theta$$





$$\sin \theta = \frac{3}{2} \times \frac{1}{\sqrt{3}} = \frac{3}{2} \times \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$
$$\sin \theta = \frac{\sqrt{3}}{2}$$
$$\theta = \frac{\pi}{3}$$
  
26. Question

Find  $\lambda$ , if  $(2\hat{i}+6\hat{j}+14\hat{k})\times(\hat{i}-\lambda\hat{j}+7\hat{k})=\vec{0}$ .

## Answer

We need to solve the problem by finding cross product through determinant.

Let  $\vec{M} = 2\hat{\imath} + 6\hat{j} + 14\hat{k}$  and  $\vec{N} = \hat{\imath} - \lambda\hat{j} + 7\hat{k}$ , also  $\vec{M} \times \vec{N} = 0$  (Given)

$$\vec{M} \times \vec{N} = \begin{vmatrix} \hat{\iota} & \hat{j} & \hat{k} \\ M_1 & M_2 & M_3 \\ N_1 & N_2 & N_3 \end{vmatrix}$$
$$= (M_2 N_3 - M_3 N_2)\hat{\iota} - (M_1 N_3 - M_3 N_1)\hat{j} + (M_1 N_2 - M_2 N_1)\hat{k}$$

Inserting the given values we get,

$$\vec{0} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 6 & 14 \\ 1 & -\lambda & 7 \end{vmatrix} \\ = (6 \times 7 - (14 \times -\lambda))\hat{i} - (2 \times 7 - 14 \times 1)\hat{j} + ((2 \times -\lambda) - 6 \times 1)\hat{k}$$

 $(42+14\lambda)\hat{\imath} - 0\hat{\jmath} + (-2\lambda - 6)\hat{k} = 0\hat{\imath} + 0\hat{\jmath} + 0\hat{k}$ 

On comparing LHS and RHS we get,

 $42+14\lambda=0$  and  $2\lambda-6=0$ 

 $14\lambda = -42and - 2\lambda = 6$ 

 $\lambda = -3$  and  $\lambda = -3$ 

## 27. Question

Write the value of the area of the parallelogram determined by the vectors  $2\hat{i}$  and  $3\hat{j}$ .

CLICK HERE

≫

🕀 www.studentbro.in

## Answer

Area of the parallelogram is give by  $|\vec{a} \times \vec{b}|$ 

```
Let, \vec{a} = 2\hat{\imath} and \vec{b} = 3\hat{\jmath}

Area = |\vec{a} \times \vec{b}|

= \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & 0 & 0 \\ 0 & 3 & 0 \end{vmatrix}

= (0 - 0)\hat{\imath} - (0 - 0)\hat{\jmath} + (6 - 0)\hat{k}

= 6\hat{k} = 6|\hat{k}| = 6(1) \rightarrow (\vec{k} \text{ is an unit vector})

= 6 \text{ sq. units.}
```

Write the value of  $(\hat{i} \times \hat{j}) \cdot \hat{k} + (\hat{j} + \hat{k}) \cdot \hat{j}$ .

# Answer

We know that,

 $\hat{\iota} \times \hat{\jmath} = \hat{k} \to (1)$   $\hat{\jmath} \times \hat{k} = \hat{\iota} \to (2)$   $\hat{k} \times \hat{\iota} = \hat{\jmath} \to (3)$   $\hat{\iota}.\hat{\iota} = \hat{\jmath}.\hat{\jmath} = \hat{k}.\hat{k} = 1 \to (4)$   $\hat{\iota}.\hat{\jmath} = \hat{\iota}.\hat{k} = \hat{\jmath}.\hat{k} = 0 \to (5)$ Now,  $= (\hat{\iota} \times \hat{\jmath}).\hat{k} + (\hat{\jmath} + \hat{k}).\hat{\jmath}$ 

$$=\hat{k}.\hat{k}+\hat{j}.\hat{j}+\hat{k}.\hat{j} \rightarrow (\text{From 1})$$

= 1+1+0  $\rightarrow$  (From 4 and 5)

## 29. Question

Find a vector of magnitude  $\sqrt{171}$  which is perpendicular to both of the vectors  $\vec{a} = \hat{i} + 2\hat{j} - 3\hat{k}$  and  $\vec{b} = 3\hat{i} - \hat{j} + 2\hat{k}$ .

#### Answer

We know that cross product of two vectors gives us a vector which is perpendicular to both the vectors. If we can find an unit vector

perpendicular to the given vectors, we can easily get the answer by multiplying  $\sqrt{171}$  to the unit vector.

Unit vectors perpendicular to the given vectors  $= \pm \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$ 

Now,

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = (a_2b_3 - a_3b_2)\hat{\imath} - (a_1b_3 - a_3b_1)\hat{\jmath} + (a_1b_2 - a_2b_1)\hat{k}$$
$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & 2 & -3 \\ 3 & -1 & 2 \\ = (2 \times 2 - (-3 \times -1))\hat{\imath} - (1 \times 2 - (-3 \times 3))\hat{\jmath} \\ + ((1 \times -1) - 2 \times 3)\hat{k} \end{vmatrix}$$
$$\vec{a} \times \vec{b} = \hat{\imath} - 11\hat{\jmath} - 7\hat{k}$$

$$\left|\vec{a} \times \vec{b}\right| = \sqrt{1^2 + (-11)^2 + (-7)^2} = \sqrt{171}$$

: Unit vectors perpendicular to  $\vec{a}$  and  $\vec{b} = \pm \frac{\hat{\imath} - 11\hat{\jmath} - 7\hat{k}}{\sqrt{171}}$ 

Vectors of magnitude  $\sqrt{171}$  which are perpendicular to  $\vec{a}$  and  $\vec{b} \rightarrow$ 

Get More Learning Materials Here : 💶

CLICK HERE

# 🕀 www.studentbro.in

$$\sqrt{171} \times \pm \frac{\hat{\iota} - 11\hat{j} - 7\hat{k}}{\sqrt{171}} = \pm (\hat{\iota} - 11\hat{j} - 7\hat{k})$$

Write the number of vectors of unit length perpendicular to both the vectors  $\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k}$  and  $\vec{b} = \hat{j} + \hat{k}$ .

### Answer

As we know, for vectors  $\vec{a}$  and  $\vec{b}$  unit vectors perpendicular to them is give by  $\pm \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$ 

Unit vector can be  $\perp$  either in positive or negative direction.

Hence, the number of vectors of unit length perpendicular to both the vectors  $\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k}$  and  $\vec{b} = \hat{j} + \hat{k}$  is 2.

## 31. Question

Write the angle between the vectors  $\vec{a} \times \vec{b}$  and  $\vec{a} \times \vec{b}$ .

## Answer

Given question gives us two same vectors so the angle is **0**°.

In case, it asks write the angle between the vectors  $\vec{a} \times \vec{b}$  and  $\vec{b} \times \vec{a}$  –

The angle between the vectors will be  $180^{\circ}$  as they are equal in magnitude and opposite in direction.

## MCQ

## 1. Question

Mark the correct alternative in each of the following:

If  $\vec{a}$  is any vector, then  $\left(\vec{a}\times\hat{i}\right)^2+\left(\vec{a}\times\hat{j}\right)^2+\left(\vec{a}\times\hat{k}\right)^2=$ 

A.  $\vec{a}^2$ 

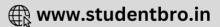
B.  $2\vec{a}^2$ 

C.  $3\overline{a}^2$ 

D.  $4\vec{a}^2$ 

## Answer

Let  $\vec{a} = a_1\hat{\imath} + a_2\hat{\jmath} + a_3\hat{k}$   $\vec{a} \times \hat{\imath} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ a_1 & a_2 & a_3 \\ 1 & 0 & 0 \end{vmatrix}$   $= a_3\hat{\jmath} - a_2\hat{k}$   $(\vec{a} \times \hat{\imath})^2 = a_3^2 + a_2^2 \because \hat{\jmath}.\hat{k} = 0$   $\vec{a} \times \hat{\jmath} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ a_1 & a_2 & a_3 \\ 0 & 1 & 0 \end{vmatrix}$  $= -a_2\hat{\imath} + a_1\hat{k}$ 



$$(\vec{a} \times j)^{2} = a_{3}^{2} + a_{1}^{2} :: \hat{k} = 0$$
  

$$\vec{a} \times \hat{k} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ 0 & 0 & 1 \end{vmatrix}$$
  

$$a_{2}\hat{i} - a_{1}\hat{j}$$
  

$$(\vec{a} \times k)^{2} = a_{1}^{2} + a_{2}^{2} :: \hat{j}.\hat{i} = 0$$
  

$$\left(\vec{a} \times \hat{i}\right)^{2} + \left(\vec{a} \times \hat{j}\right)^{2} + \left(\vec{a} \times \hat{k}\right)^{2} = a_{3}^{2} + a_{2}^{2} + a_{3}^{2} + a_{1}^{2} + a_{1}^{2} + a_{2}^{2}$$
  

$$= 2(a_{1}^{2} + a_{2}^{2} + a_{3}^{2})$$
  

$$= 2\vec{a}^{2}$$

(B)

## 2. Question

Mark the correct alternative in each of the following:

If  $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$  and  $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$ ,  $\vec{a} \neq 0$ , then A.  $\vec{b} = \vec{c}$ B.  $\vec{b} = \vec{0}$ C.  $\vec{b} + \vec{c} = \vec{0}$ D. None of these **Answer**   $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$   $\vec{a} \cdot \vec{b} - \vec{a} \cdot \vec{c}$   $\vec{a} (\vec{b} - \vec{c}) = 0 \dots (1)$  $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$ 

 $\vec{a} \times \vec{b} - \vec{a} \times \vec{c} = 0$ 

 $\vec{a} \times \left(\vec{b} - \vec{c}\right) = 0$ 

# Let ${\it Q}$ be the angle between $\vec{a}$ and $\vec{b}-\vec{c}$

 $|\vec{a}| |\vec{b} - \vec{c}| \sin Q = 0 \dots (2)$ 

Out of the four options the only option that satisfies both (1) and (2) is

 $\vec{b} - \vec{c} = 0$ 

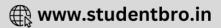
 $\vec{b} = \vec{c}$  (A)

## 3. Question

Mark the correct alternative in each of the following:

The vector  $\vec{b} = 3\hat{i} + 4\hat{k}$  is to be written as sum of a vector  $\vec{\alpha}$  parallel to  $\vec{a} = \hat{i} + \hat{j}$  and a vector  $\vec{\beta}$  perpendicular to  $\vec{a}$ . Then  $\vec{\alpha} =$ 

Get More Learning Materials Here : 📕



A. 
$$\frac{3}{2}(\hat{i} + \hat{j})$$
  
B. 
$$\frac{2}{3}(\hat{i} + \hat{j})$$
  
C. 
$$\frac{1}{2}(\hat{i} + \hat{j})$$
  
D. 
$$\frac{1}{3}(\hat{i} + \hat{j})$$

## Answer

 $\vec{b} = 3\hat{i} + 4\hat{k}$   $\vec{a} = \hat{i} + \hat{j}$   $\vec{b} = \vec{a} + \vec{\beta}$ Let  $\vec{a} = a\hat{i} + b\hat{j} + c\hat{k}$ Since  $\vec{a} || \vec{a}$   $\vec{a} = \gamma \vec{a}$   $a\hat{i} + b\hat{j} + c\hat{k} = \gamma(\hat{i} + \hat{j})$   $\alpha = \gamma \hat{i} + \gamma \hat{j}$   $\beta = \vec{b} - \alpha$   $= (3 - \gamma)\hat{i} - \gamma \hat{j} + 4\hat{k}$ Since  $\beta$  is perpendicular to a  $\vec{a} \cdot \beta = 0$   $3 - \gamma - \gamma = 0$   $\gamma = \frac{3}{2}$  $\therefore \alpha = \frac{3}{2}(\hat{i} + \hat{j})$  (A)

## 4. Question

Mark the correct alternative in each of the following:

The unit vector perpendicular to the plane passing through points  $P(\hat{i} - \hat{j} + 2\hat{k})$ ,  $Q(2\hat{i} - \hat{k})$  and  $R(2\hat{j} + \hat{k})$  is

A.  $2\hat{i} + \hat{j} + \hat{k}$ B.  $\sqrt{6}(2\hat{i} + \hat{j} + \hat{k})$ C.  $\frac{1}{\sqrt{6}}(2\hat{i} + \hat{j} + \hat{k})$ 

Get More Learning Materials Here : 📕



# Regional www.studentbro.in

D. 
$$\frac{1}{6} \left( 2\hat{i} + \hat{j} + \hat{k} \right)$$

## Answer

The equations of the plane is given by

 $A(x-x_1)+B(y-y_1)+C(z-z_1)=0$ 

Where A,B and C are the drs of the normal to the plane.

Putting the first point,

=A(x-1)+B(y+1)+C(z-2)=0...(1)

Putting the second point in Eqn (1)

=A(2-1)+B(0+1)+C(-1-2)=0

A+B-3C=0 ...(a)

Putting the third point in Eqn (1)

=A(0-1)+B(2+1)+C(1-2)=0

= -A+3B-C=0...(b)

Solving (a) and (b) using cross multiplication method

A+B-3C=0

$$\frac{A}{-1-(-9)} = \frac{-B}{-1-3} = \frac{C}{3-(-1)} = a$$

 $A = 8\alpha; B = 4\alpha; C = 4\alpha$ 

Put these in Eqn(1)

$$=8\alpha(x-1)+4\alpha(y+1)+4\alpha(z-2)=0$$

=2(x-1)+(y+1)+(z-2)=0

=2x+2+y+1+z-2=0

$$2x+y+z+1=0$$

Now the vector perpendicular to this plane is

$$\vec{c} = 2\hat{\imath} + \hat{\jmath} + \hat{k}$$

Now the unit vector of  $\vec{c}$  is given by

$$\hat{c} = \frac{\vec{c}}{|\vec{c}|}$$
$$|\vec{c}| = \sqrt{2^2 + 1^2 + 1^2} = \sqrt{6}$$
$$\hat{c} = \frac{1}{\sqrt{6}} (2\hat{\iota} + \hat{j} + \hat{k}) (C)$$

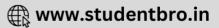
## 5. Question

Mark the correct alternative in each of the following:

If  $\vec{a},\vec{b}$  represent the diagonals of a rhombus, then

A.  $\vec{a} \times \vec{b} = \vec{0}$ 





 $\mathbf{B}.\ \vec{\mathbf{a}}\cdot\vec{\mathbf{b}}=\mathbf{0}$ 

C.  $\vec{a} \cdot \vec{b} = 1$ 

D.  $\vec{a} \times \vec{b} = \vec{a}$ 

## Answer

The diagnols of a rhombus are always perpendicular

## It means $\vec{a}$ is perpendicular to $\vec{b}$

Q=90°

 $\cos Q = 0$ 

 $\vec{a}\cdot\vec{b}=0$  (B)

# 6. Question

Mark the correct alternative in each of the following:

Vectors  $\vec{a}$  and  $\vec{b}$  are inclined at angle  $\theta = 120^{\circ}$ . If  $|\vec{a}| = 1$ ,  $|\vec{b}| = 2$ , then  $\left[ \left( \vec{a} + 3\vec{b} \right) \times \left( 3\vec{a} - \vec{b} \right) \right]^2$  is equal to

- A. 300
- B. 325
- C. 275
- D. 225

## Answer

$$\left[ \left( \vec{a} + 3\vec{b} \right) \times \left( 3\vec{a} - \vec{b} \right) \right]^{2}$$

$$= \left[ 3\left( \vec{a} \times \vec{a} \right) - \left( \vec{a} \times \vec{b} \right) - 9\left( \vec{b} \times \vec{a} \right) - \left( 3\vec{b} \times \vec{b} \right) \right]^{2}$$

$$\left[ 3\left( 0 \ \because \text{ Angle between the same vector is } 0^{\circ} \text{ and } \sin 0 = 0 \right) - \left( \vec{a} \times -3\left( \vec{a} \times \vec{b} \right) - 3\left( \vec{b} \times \vec{b} = 0 \right) \right]^{2} \ \because \ \left( \vec{b} \times \vec{a} \right) = -\left( \vec{a} \times \vec{b} \right)$$

$$= \left[ -10 \left( \left| \vec{a} \right| \left| \vec{b} \right| \sin \frac{2\pi}{3} \right) \right]^{2}$$

$$= 100 \times 1 \times 4 \times \frac{3}{4}$$

$$\because \sin \frac{2\pi}{3} = \sin \pi - \frac{\pi}{3} = \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$$

$$= 300 \text{ (A)}$$

# 7. Question

Mark the correct alternative in each of the following:

If  $\vec{a} = \hat{i} + \hat{j} - \hat{k}$ ,  $\vec{b} = -\hat{i} + 2\hat{j} + 2\hat{k}$  and  $\vec{c} = -\hat{i} + 2\hat{j} - \hat{k}$ , then a unit vector normal to the vectors  $\vec{a} + \vec{b}$  and  $\vec{b} - \vec{c}$  is A.  $\hat{i}$ B.  $\hat{j}$ 

Get More Learning Materials Here : 💶

b)

# 🕀 www.studentbro.in

# с. $\hat{k}$

D. None of these

## Answer

 $\vec{a} + \vec{b} = 3\hat{j} + \hat{k}$ 

 $\vec{b} - \vec{c} = 3\hat{k}$ 

Let  $\vec{c}$  be perpendicular to both of these vectors

$$\vec{c} = (\vec{a} + \vec{b}) \times (\vec{b} - \vec{c})$$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{vmatrix}$$

$$= \hat{i}(9 - 0) - \hat{j}(0 - 0) + \hat{k}(0 - 0)$$

$$= 9\hat{i}$$

Now the unit vector of  $\vec{c}$  is given by

$$\hat{c} = \frac{\vec{c}}{|\vec{c}|}$$
$$|\vec{c}| = \sqrt{9^2} = 9$$
$$\hat{c} = \frac{1}{9}(9\hat{i}) = \hat{i} \text{ (A)}$$

# 8. Question

Mark the correct alternative in each of the following:

A unit vector perpendicular to both  $\hat{i}+\hat{j}$  and  $\hat{j}+\hat{k}$  is

A. 
$$\hat{i} - \hat{j} + \hat{k}$$
  
B.  $\hat{i} + \hat{j} + \hat{k}$   
C.  $\frac{1}{\sqrt{3}} (\hat{i} + \hat{j} + \hat{k})$   
D.  $\frac{1}{\sqrt{3}} (\hat{i} - \hat{j} + \hat{k})$ 

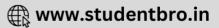
## Answer

Let  $\vec{a} = \hat{\imath} + \hat{\jmath}$  and  $\vec{b} = \hat{\jmath} + \vec{k}$ 

A vector perpendicular to both of them is given by  $\vec{a} \times \vec{b}$ 

$$\vec{a} \times \vec{b} = \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix}$$
$$= \hat{i}(1-0) - \hat{j}(1-0) + \hat{k}(1-0)$$
$$= \hat{i} - \hat{j} + \hat{k}$$

Now the unit vector of  $\vec{c}$  is given by



$$\hat{c} = \frac{\vec{c}}{|\vec{c}|}$$
$$|\vec{c}| = \sqrt{1^2 + (-1)^2 + 1^2} = \sqrt{3}$$
$$\hat{c} = \frac{1}{\sqrt{3}} (\hat{\iota} - \hat{j} + \hat{k}) \text{ (D)}$$

Mark the correct alternative in each of the following:

If 
$$\vec{a} = 2\hat{i} - 3\hat{j} - \hat{k}$$
 and  $\vec{b} = \hat{i} + 4\hat{j} - 2\hat{k}$ , then  $\vec{a} \times \vec{b}$  is  
A.  $10\hat{i} + 2\hat{j} + 11\hat{k}$   
B.  $10\hat{i} + 3\hat{j} + 11\hat{k}$   
C.  $10\hat{i} - 3\hat{j} + 11\hat{k}$   
D.  $10\hat{i} - 2\hat{j} - 10\hat{k}$   
Answer

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -3 & -1 \\ -2 & 4 & -2 \end{vmatrix}$$
$$= \hat{i}(6 - (-4)) - \hat{j}(-4 - (-1)) + \hat{k}(8 - (-3))$$
$$= \hat{i}(10) - \hat{j}(-3) + \hat{k}(11)$$
$$= 10\hat{i} + 3\hat{j} + 11\hat{k} (B)$$

# 10. Question

Mark the correct alternative in each of the following:

If  $\hat{i}$ ,  $\hat{j}$ ,  $\hat{k}$  are unit vectors, then A.  $\hat{i} \cdot \hat{j} = 1$ B.  $\hat{i} \cdot \hat{i} = 1$ C.  $\hat{i} \times \hat{j} = 1$ D.  $\hat{i} \times (\hat{j} \times \hat{k}) = 1$ 

## Answer

 $\hat{i},\,\hat{j},\,\hat{k}\,$  are unit vectors and angle between each of them is 90°

**CLICK HERE** 

>>>

Regional www.studentbro.in

So,  $\cos Q = \cos \frac{\pi}{2} = 0$ So (A) is false  $\because \hat{i} \cdot \hat{j} = 0$ Option (B) is true because angle between them is 0° So,  $\cos Q = \cos 0 = 1$  $\hat{i} \cdot \hat{i} = 1 \because |\hat{i}| = |\hat{j}| = 1$ 

(C) False as  $\hat{i} \times \hat{j} = \hat{k}$ 

(D) is False as  $\hat{j} \times \hat{k} = \hat{i}$ 

And then  $\hat{\imath} \times \hat{\imath} = 0$  as  $\sin Q = 0$ 

(B)

## 11. Question

Mark the correct alternative in each of the following:

If  $\theta$  is the angle between the vectors  $2\hat{i}-2\hat{j}+4\hat{k}$  and  $3\hat{i}+\hat{j}+2\hat{k}$  , then sin  $\theta$  =

A.  $\frac{2}{3}$ B.  $\frac{2}{\sqrt{7}}$ C.  $\frac{\sqrt{2}}{7}$ D.  $\sqrt{\frac{2}{7}}$ 

## Answer

Let  $\vec{a} = 2\hat{\imath} - 2\hat{\jmath} + 4\hat{k}$  and  $\vec{b} = 3\hat{\imath} + \hat{\jmath} + 2\hat{k}$   $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & -2 & 4 \\ 3 & 1 & 2 \end{vmatrix}$   $= \hat{\imath}(-4-4) - \hat{\jmath}(4-12) + \hat{k}(2-(-6))$   $= -8\hat{\imath} + 8\hat{\jmath} + 8\hat{k}$ We know  $|\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}||\sin Q||\hat{\imath}|$   $\Rightarrow \sqrt{(-8)^2 + 8^2 + 8^2} = \sqrt{2^2 + (-2)^2 + 4^2}\sqrt{3^2 + 1^2 + 2^2} \sin Q$   $\Rightarrow 8\sqrt{3} = 2\sqrt{6}.\sqrt{14} \sin Q$   $\Rightarrow \frac{2}{\sqrt{7}} = \sin Q$  (B) **12. Question** Mark the correct alternative in each of the following:

If 
$$|\vec{a} \times \vec{b}| = 4$$
,  $|\vec{a}. \vec{b}| = 2$ , then  $|\vec{a}|^2 |\vec{b}|^2 = 4$ . 6  
B. 2  
C. 20  
D. 8  
Answer





We know,

$$(\vec{a}.\vec{b})^{2} + |\vec{a}\times\vec{b}| = |\vec{a}|^{2}|\vec{b}|^{2}$$
$$\Rightarrow 2^{2} + 4^{2} = |\vec{a}|^{2}|\vec{b}|^{2}$$
$$\Rightarrow 4 + 16 = |\vec{a}|^{2}|\vec{b}|^{2}$$
$$\Rightarrow 20 = |\vec{a}|^{2}|\vec{b}|^{2}$$

# 13. Question

Mark the correct alternative in each of the following:

The value of  $(\vec{a} \times \vec{b})^2$  is A.  $|\vec{a}|^2 + |\vec{b}|^2 - (\vec{a} \cdot \vec{b})^2$ B.  $|\vec{a}|^2 |\vec{b}|^2 - (\vec{a} \cdot \vec{b})^2$ C.  $|\vec{a}|^2 + |\vec{b}|^2 - 2(\vec{a} \cdot \vec{b})$ D.  $|\vec{a}|^2 + |\vec{b}|^2 - \vec{a} \cdot \vec{b}$ 

## Answer

Let Q be the angle between vectors a and b

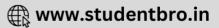
 $= (\vec{a} \times \vec{b})^{2}$   $= (|a||b||\sin Q||\hat{n}|)^{2}$   $= |a|^{2}|b|^{2}sin^{2}Q$   $= |a|^{2}|b|^{2}(1 - cos^{2}Q)$   $\because sin^{2}Q = 1 - cos^{2}Q$   $= |a|^{2}|b|^{2} - |a|^{2}|b|^{2}cos^{2}Q$   $= |a|^{2}|b|^{2} - (a, b)^{2} (B) \because (a, b) = |a||b| cos Q$ 

# 14. Question

Mark the correct alternative in each of the following:

The value of  $\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j})$ , is A. 0 B. -1 C. 1 D. 3 **Answer** We know,





 $(\hat{\imath} \times \hat{\imath}) = 0;$   $(\hat{\jmath} \times \hat{\jmath}) = 0;$   $(\hat{k} \times \hat{k}) = 0;$   $(\hat{\imath} \times \hat{\jmath}) = \hat{k};$   $(\hat{\jmath} \times \hat{k}) = \hat{\imath};$   $(\hat{k} \times \hat{\imath}) = \hat{\jmath};$   $(\hat{\jmath} \times \hat{\imath}) = -\hat{k};$   $(\hat{k} \times \hat{\jmath}) = -\hat{\imath};$  $(\hat{\imath} \times \hat{k}) = -\hat{\jmath};$ 

Using them,

$$\hat{i} \cdot \left(\hat{j} \times \hat{k}\right) + \hat{j} \cdot \left(\hat{i} \times \hat{k}\right) + \hat{k} \cdot \left(\hat{i} \times \hat{j}\right)$$

$$= \hat{\iota}.\,\hat{\iota} - \hat{\jmath}.\,\hat{\jmath} + \hat{k}.\,\hat{k}$$

We know,

 $\hat{\iota}.\hat{\iota} = \hat{j}.\hat{j} = \hat{k}.\hat{k} = 1 = 1 - 1 + 1$ 

= 1 (C)

# 15. Question

Mark the correct alternative in each of the following:

If  $\theta$  is the angle between any two vectors  $\vec{a}$  and  $\vec{b}$ , then  $|\vec{a}.\vec{b}| = |\vec{a} \times \vec{b}|$  when  $\theta$  is equal to

A. 0

B.  $\frac{\pi}{4}$ 

C.  $\frac{\pi}{2}$ 

2

# D. π

# Answer

 $|\vec{a}.\vec{b}| = |\vec{a} \times \vec{b}|$ 

 $|\vec{a}||\vec{b}|\cos Q = |\vec{a}||\vec{b}|\sin Q$ 

$$\tan Q = 1$$

$$Q = \frac{\pi}{4}$$



